Teoriya Veroyatnostei i ee Primeneniya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Subscription
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Teor. Veroyatnost. i Primenen.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teor. Veroyatnost. i Primenen., 2012, Volume 57, Issue 1, Pages 168–178 (Mi tvp4438)  

This article is cited in 5 scientific papers (total in 5 papers)

Short Communications

A functional central limit theorem for the measure of level surfaces of a Gaussian random field

D. Meschenmosera, A. P. Shashkinb

a University of Ulm
b M. V. Lomonosov Moscow State University, Faculty of Mechanics and Mathematics

DOI: https://doi.org/10.4213/tvp4438

Full text: PDF file (485 kB)
References: PDF file   HTML file

English version:
Theory of Probability and its Applications, 2013, 57:1, 162–172

Bibliographic databases:

Received: 11.03.2011

Citation: D. Meschenmoser, A. P. Shashkin, “A functional central limit theorem for the measure of level surfaces of a Gaussian random field”, Teor. Veroyatnost. i Primenen., 57:1 (2012), 168–178; Theory Probab. Appl., 57:1 (2013), 162–172

Citation in format AMSBIB
\Bibitem{MesSha12}
\by D.~Meschenmoser, A.~P.~Shashkin
\paper A functional central limit theorem for the measure of level surfaces of a Gaussian random field
\jour Teor. Veroyatnost. i Primenen.
\yr 2012
\vol 57
\issue 1
\pages 168--178
\mathnet{http://mi.mathnet.ru/tvp4438}
\crossref{https://doi.org/10.4213/tvp4438}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=3201646}
\zmath{https://zbmath.org/?q=an:06176068}
\elib{https://elibrary.ru/item.asp?id=20732948}
\transl
\jour Theory Probab. Appl.
\yr 2013
\vol 57
\issue 1
\pages 162--172
\crossref{https://doi.org/10.1137/S0040585X97985844}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000315946800011}
\elib{https://elibrary.ru/item.asp?id=20442525}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84876999645}


Linking options:
  • http://mi.mathnet.ru/eng/tvp4438
  • https://doi.org/10.4213/tvp4438
  • http://mi.mathnet.ru/eng/tvp/v57/i1/p168

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. A. Shashkin, “A functional central limit theorem for the level measure of a Gaussian random field”, Stat. Probab. Lett., 83:2 (2013), 637–643  crossref  mathscinet  zmath  isi  elib
    2. A. P. Shashkin, “Functional limit theorem for integrals over level sets of Gaussian random field”, Theory Probab. Appl., 60:1 (2016), 150–161  mathnet  crossref  crossref  mathscinet  isi  elib
    3. L. I. Nicolaescu, “A CLT concerning critical points of random functions on a Euclidean space”, Stoch. Process. Their Appl., 127:10 (2017), 3412–3446  crossref  mathscinet  zmath  isi
    4. Molchanov I., Theory of Random Sets, 2Nd Edition, Probability Theory and Stochastic Modelling, 87, Springer International Publishing Ag, 2017  crossref  mathscinet  zmath  isi
    5. L. I. Nicolaescu, “Critical points of multidimensional random Fourier series: central limits”, Bernoulli, 24:2 (2018), 1128–1170  crossref  mathscinet  zmath  isi
  • Теория вероятностей и ее применения Theory of Probability and its Applications
    Number of views:
    This page:371
    Full text:127
    References:24
    First page:1

     
    Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2021