RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Archive
Impact factor
Subscription
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Teor. Veroyatnost. i Primenen.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teor. Veroyatnost. i Primenen., 2012, Volume 57, Issue 2, Pages 296–321 (Mi tvp4448)  

This article is cited in 11 scientific papers (total in 11 papers)

Sobolev regularity of transportation of probability measures and transportation inequalities

A. V. Kolesnikov

Moscow State Institute of Electronics and Mathematics — Higher School of Economics

DOI: https://doi.org/10.4213/tvp4448

Full text: PDF file (244 kB)
References: PDF file   HTML file

English version:
Theory of Probability and its Applications, 2013, 57:2, 243–264

Bibliographic databases:

Received: 19.10.2011

Citation: A. V. Kolesnikov, “Sobolev regularity of transportation of probability measures and transportation inequalities”, Teor. Veroyatnost. i Primenen., 57:2 (2012), 296–321; Theory Probab. Appl., 57:2 (2013), 243–264

Citation in format AMSBIB
\Bibitem{Kol12}
\by A.~V.~Kolesnikov
\paper Sobolev regularity of transportation of probability measures and transportation inequalities
\jour Teor. Veroyatnost. i Primenen.
\yr 2012
\vol 57
\issue 2
\pages 296--321
\mathnet{http://mi.mathnet.ru/tvp4448}
\crossref{https://doi.org/10.4213/tvp4448}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=3201654}
\zmath{https://zbmath.org/?q=an:06200626}
\elib{http://elibrary.ru/item.asp?id=20732956}
\transl
\jour Theory Probab. Appl.
\yr 2013
\vol 57
\issue 2
\pages 243--264
\crossref{https://doi.org/10.1137/S0040585X97985947}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000319917400005}
\elib{http://elibrary.ru/item.asp?id=20440289}
\scopus{http://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84878756274}


Linking options:
  • http://mi.mathnet.ru/eng/tvp4448
  • https://doi.org/10.4213/tvp4448
  • http://mi.mathnet.ru/eng/tvp/v57/i2/p296

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. V. I. Bogachev, A. V. Kolesnikov, “The Monge–Kantorovich problem: achievements, connections, and perspectives”, Russian Math. Surveys, 67:5 (2012), 785–890  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib  elib
    2. A. V. Kolesnikov, “Hessian metrics, $CD(K,N)$-spaces, and optimal transportation of log-concave measures”, Discrete Contin. Dyn. Syst., 34:4 (2014), 1511–1532  crossref  mathscinet  zmath  isi
    3. A. V. Kolesnikov, M. Röckner, “On continuity equations in infinite dimensions with non-Gaussian reference measure”, J. Funct. Anal., 266:7 (2014), 4490–4537  crossref  mathscinet  zmath  isi  elib
    4. A. V. Kolesnikov, S. Yu. Tikhonov, “Regularity of the Monge-Ampère equation in Besov's spaces”, Calc. Var. Partial Differential Equations, 49:3-4 (2014), 1187–1197  crossref  mathscinet  zmath  isi
    5. B. B. Klartag, A. V. Kolesnikov, “Eigenvalue distribution of optimal transportation”, Anal. PDE, 8:1 (2015), 33–55  crossref  mathscinet  zmath  isi  elib
    6. Alexander V. Kolesnikov, Danila A. Zaev, “Exchangeable optimal transportation and log-concavity”, Theory Stoch. Process., 20(36):2 (2015), 54–62  mathnet  mathscinet
    7. A. V. Kolesnikov, E. Milman, “Riemannian metrics on convex sets with applications to Poincaré and log-Sobolev inequalities”, Calc. Var. Partial Differ. Equ., 55:4 (2016), 77  crossref  mathscinet  zmath  isi  elib  scopus
    8. B. Klartag, A. V. Kolesnikov, “Remarks on curvature in the transportation metric”, Anal. Math., 43:1 (2017), 67–88  crossref  mathscinet  zmath  isi  scopus
    9. M. Colombo, A. Figalli, Ya. Jhaveri, “Lipschitz changes of variables between perturbations of log-concave measures”, Ann. Scuola Norm. Super. Pisa-Cl. Sci., 17:4 (2017), 1491–1519  mathscinet  zmath  isi
    10. A. V. Kolesnikov, D. A. Zaev, “Optimal transportation of processes with infinite Kantorovich distance: independence and symmetry”, Kyoto J. Math., 57:2 (2017), 293–324  crossref  mathscinet  zmath  isi
    11. Alexander V. Kolesnikov, Egor D. Kosov, “Moment measures and stability for Gaussian inequalities”, Theory Stoch. Process., 22(38):2 (2017), 47–61  mathnet
  • Теория вероятностей и ее применения Theory of Probability and its Applications
    Number of views:
    This page:271
    Full text:69
    References:43

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2020