|
This article is cited in 11 scientific papers (total in 11 papers)
Sobolev regularity of transportation of probability measures and transportation inequalities
A. V. Kolesnikov Moscow State Institute of Electronics and Mathematics — Higher School of Economics
DOI:
https://doi.org/10.4213/tvp4448
Full text:
PDF file (244 kB)
References:
PDF file
HTML file
English version:
Theory of Probability and its Applications, 2013, 57:2, 243–264
Bibliographic databases:
Received: 19.10.2011
Citation:
A. V. Kolesnikov, “Sobolev regularity of transportation of probability measures and transportation inequalities”, Teor. Veroyatnost. i Primenen., 57:2 (2012), 296–321; Theory Probab. Appl., 57:2 (2013), 243–264
Citation in format AMSBIB
\Bibitem{Kol12}
\by A.~V.~Kolesnikov
\paper Sobolev regularity of transportation of probability measures and transportation inequalities
\jour Teor. Veroyatnost. i Primenen.
\yr 2012
\vol 57
\issue 2
\pages 296--321
\mathnet{http://mi.mathnet.ru/tvp4448}
\crossref{https://doi.org/10.4213/tvp4448}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=3201654}
\zmath{https://zbmath.org/?q=an:06200626}
\elib{https://elibrary.ru/item.asp?id=20732956}
\transl
\jour Theory Probab. Appl.
\yr 2013
\vol 57
\issue 2
\pages 243--264
\crossref{https://doi.org/10.1137/S0040585X97985947}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000319917400005}
\elib{https://elibrary.ru/item.asp?id=20440289}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84878756274}
Linking options:
http://mi.mathnet.ru/eng/tvp4448https://doi.org/10.4213/tvp4448 http://mi.mathnet.ru/eng/tvp/v57/i2/p296
Citing articles on Google Scholar:
Russian citations,
English citations
Related articles on Google Scholar:
Russian articles,
English articles
This publication is cited in the following articles:
-
V. I. Bogachev, A. V. Kolesnikov, “The Monge–Kantorovich problem: achievements, connections, and perspectives”, Russian Math. Surveys, 67:5 (2012), 785–890
-
A. V. Kolesnikov, “Hessian metrics, $CD(K,N)$-spaces, and optimal transportation of log-concave measures”, Discrete Contin. Dyn. Syst., 34:4 (2014), 1511–1532
-
A. V. Kolesnikov, M. Röckner, “On continuity equations in infinite dimensions with non-Gaussian reference measure”, J. Funct. Anal., 266:7 (2014), 4490–4537
-
A. V. Kolesnikov, S. Yu. Tikhonov, “Regularity of the Monge-Ampère equation in Besov's spaces”, Calc. Var. Partial Differential Equations, 49:3-4 (2014), 1187–1197
-
B. B. Klartag, A. V. Kolesnikov, “Eigenvalue distribution of optimal transportation”, Anal. PDE, 8:1 (2015), 33–55
-
Alexander V. Kolesnikov, Danila A. Zaev, “Exchangeable optimal transportation and log-concavity”, Theory Stoch. Process., 20(36):2 (2015), 54–62
-
A. V. Kolesnikov, E. Milman, “Riemannian metrics on convex sets with applications to Poincaré and log-Sobolev inequalities”, Calc. Var. Partial Differ. Equ., 55:4 (2016), 77
-
B. Klartag, A. V. Kolesnikov, “Remarks on curvature in the transportation metric”, Anal. Math., 43:1 (2017), 67–88
-
M. Colombo, A. Figalli, Ya. Jhaveri, “Lipschitz changes of variables between perturbations of log-concave measures”, Ann. Scuola Norm. Super. Pisa-Cl. Sci., 17:4 (2017), 1491–1519
-
A. V. Kolesnikov, D. A. Zaev, “Optimal transportation of processes with infinite Kantorovich distance: independence and symmetry”, Kyoto J. Math., 57:2 (2017), 293–324
-
Alexander V. Kolesnikov, Egor D. Kosov, “Moment measures and stability for Gaussian inequalities”, Theory Stoch. Process., 22(38):2 (2017), 47–61
|
Number of views: |
This page: | 307 | Full text: | 92 | References: | 48 |
|