|
Short Communications
On the Theory of Differential Equations with Random Coenfficients
G. Ya. Lyubarskii, Yu. L. Rabotnikov Kharkov
Abstract:
The equation $\ddot u(t)+a_1(t)\dot u(t)+[\alpha(t)-\alpha(t)]u(t)=0$ is considered where the coefficient $a_1(t)$ and $a_0 (t)$ are real, piecewise continuous and periodic functions with the same period $T$ and $\alpha (t)$ is a real random function. The restrictions on the $\alpha (t)$ are essentially the following. The correlation length $\alpha $ is much shorter than the period $T$, the random function $\alpha(t)$, $\infty<t<\infty$, does not exceed the value ${\gamma/{\sqrt a(\gamma={const}<1)}}$.
The necessary and sufficient conditions are found for the boundedness of mean values $Mu^2 (t),M[u(t)\dot u(t)]$ and $M\dot u^2 (t)$.
Full text:
PDF file (935 kB)
English version:
Theory of Probability and its Applications, 1963, 8:3, 290–298
Received: 30.11.1961
Citation:
G. Ya. Lyubarskii, Yu. L. Rabotnikov, “On the Theory of Differential Equations with Random Coenfficients”, Teor. Veroyatnost. i Primenen., 8:3 (1963), 309–318; Theory Probab. Appl., 8:3 (1963), 290–298
Citation in format AMSBIB
\Bibitem{LyuRab63}
\by G.~Ya.~Lyubarskii, Yu.~L.~Rabotnikov
\paper On the Theory of Differential Equations with Random Coenfficients
\jour Teor. Veroyatnost. i Primenen.
\yr 1963
\vol 8
\issue 3
\pages 309--318
\mathnet{http://mi.mathnet.ru/tvp4678}
\transl
\jour Theory Probab. Appl.
\yr 1963
\vol 8
\issue 3
\pages 290--298
\crossref{https://doi.org/10.1137/1108033}
Linking options:
http://mi.mathnet.ru/eng/tvp4678 http://mi.mathnet.ru/eng/tvp/v8/i3/p309
Citing articles on Google Scholar:
Russian citations,
English citations
Related articles on Google Scholar:
Russian articles,
English articles
|
Number of views: |
This page: | 70 | Full text: | 45 |
|