RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Archive
Impact factor
Subscription
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Teor. Veroyatnost. i Primenen.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teor. Veroyatnost. i Primenen., 1962, Volume 7, Issue 4, Pages 410–432 (Mi tvp4738)  

On Derived and Nonstationary Markov Chains

J. W. Cohen

Mathematical Institute,Technological University, Delft

Abstract: Given a stationary Markov chain $ _1M$, with a countable set of states $\mathscr{E}$, two new, nonstationary Markov chains $ _2M$ and $ _3M$ are formed from $\mathscr{E}$, according to the following rules (henceforth, $ _i P_h,i=1,2,3$, denotes the transition-probability matrix at the $m$-th step of the chain $ _i M$, and $ _1P_h = _1 P$):
$$ _2 P_h=\sum\limits_{n=0}^\infty {a_{nh_1}P^n},$$
where
$$0\leq a_{nh}\leq 1,\quad\sum\limits_{n=1}^\infty{a_{nh}=1},\quad\mathop{\sup}\limits_h a_{0h}<1$$
and $ _2M$ is called the derived chain, while
$$ _3P_h= _2P_h+R_h,$$
where
$$\sum\limits_{h=1}^\infty{\|{R_h} \|}<\infty$$
and $ _3M$ is called the perturbated chain. We study the problem of how various characteristics of the same state (e.g., return properties, periodicity, ergodicity), as well as certain other qualitative and quantitative indices of the chains, are interrelated in the chains $ _1M$, $ _2M$ and $ _3M$. The results obtained can be generalized to the case of Markov chains with a continuous set of states, and similar constructions can be carried out for the case off continuous time.

Full text: PDF file (2053 kB)

English version:
Theory of Probability and its Applications, 1962, 7:4, 402–423

Received: 28.06.1960
Language:

Citation: J. W. Cohen, “On Derived and Nonstationary Markov Chains”, Teor. Veroyatnost. i Primenen., 7:4 (1962), 410–432; Theory Probab. Appl., 7:4 (1962), 402–423

Citation in format AMSBIB
\Bibitem{Coh62}
\by J.~W.~Cohen
\paper On Derived and Nonstationary Markov Chains
\jour Teor. Veroyatnost. i Primenen.
\yr 1962
\vol 7
\issue 4
\pages 410--432
\mathnet{http://mi.mathnet.ru/tvp4738}
\transl
\jour Theory Probab. Appl.
\yr 1962
\vol 7
\issue 4
\pages 402--423
\crossref{https://doi.org/10.1137/1107038}


Linking options:
  • http://mi.mathnet.ru/eng/tvp4738
  • http://mi.mathnet.ru/eng/tvp/v7/i4/p410

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles
  • Теория вероятностей и ее применения Theory of Probability and its Applications
    Number of views:
    This page:58
    Full text:43

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2020