RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Archive
Impact factor
Subscription
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Teor. Veroyatnost. i Primenen.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teor. Veroyatnost. i Primenen., 1961, Volume 6, Issue 2, Pages 145–163 (Mi tvp4763)  

This article is cited in 3 scientific papers (total in 3 papers)

Limit Theorems for Sums of Independent Variables Taking into Account Large Deviations. I

Yu. V. Linnik

Moscow

Abstract: The independent identically distributed variables $x_1,x_2,…,x_n$ are supposed to have $E({x_j})=0$; $D({x_j})=\sigma^2<\infty$. Denote
$$Z_n=\frac{x_1+\cdots+x_n}{\sigma\sqrt n}.$$
Let $\Psi(n)\to\infty$ be some monotone function. The sequence of segments $[0,\Psi (n)]$ is called the zone of normal attraction (z. n. a.) if
$$\frac{{\mathbf P(Z_n>x)}}{\frac1{\sqrt{2\pi}}\int_x^\infty{e^{-n^2/2} dn}}\to1$$
for $x\in[0,\Psi(n)]$; the zones $[-\Psi(n),0]$ are defined similarly as z. n. a. The zones $[0,n^\alpha];[-n^\alpha,0](\alpha>0$ constant) are called simplest. The zones such that $\Psi(n)=o(n^{1/6})$ are called “narrow”.
For the random variables of the class $(d)$ (possessing a bounded continuous density) the zones $[0,\Psi (n)],[-\Psi (n),0]$ are called the zones of the uniform local normal attraction (z. u. l. n. a.) if
$$\frac{p_{Z_n}(x)}{\frac1{\sqrt{2\pi}}e^{-x^2/2}}\to1$$
uniformly in x belonging to the said zones. Let $\alpha<1/2$. The condition
$$\mathbf E\exp|{x_j}|^{4\alpha/(2\alpha+1)}<\infty$$
is proved to be necessary for the zones $[0,n^\alpha],[-n^\alpha,0]$, to be z. n. a., and for $x_j\in(d)$ to be the z. u. l. n. a. Let $\rho(n)$ be a given monotonic function increasing as slowly as we please, then the condition $(*)$ is sufficient for the zones $[0,n^\alpha/\rho(n)];[-n^\alpha/\rho(n),0]$ to be the z. n. a., and for $x_j\in(d)$ to be the z. u. l. n. a. if $\alpha<1/6$. If $\alpha>1/6$, $x_j\in(d)$, a condition is given in terms of the series $1/6,1/4,3/10,…,(1/2)(s+1)/(s+3)\to1/2$ and of moments of $x_j$. This condition is necessary for the zones $[0,n^\alpha \rho (n)]$, $[-n^\alpha\rho(n),0]$ to be z. u. l. n. a. and sufficient for the zones $[0,n^\alpha/\rho (n)]$; $[-n^\alpha\rho (n),0]$ to be z. u. l. n. a.

Full text: PDF file (1499 kB)

English version:
Theory of Probability and its Applications, 1961, 6:2, 131–148

Received: 28.06.1960

Citation: Yu. V. Linnik, “Limit Theorems for Sums of Independent Variables Taking into Account Large Deviations. I”, Teor. Veroyatnost. i Primenen., 6:2 (1961), 145–163; Theory Probab. Appl., 6:2 (1961), 131–148

Citation in format AMSBIB
\Bibitem{Lin61}
\by Yu.~V.~Linnik
\paper Limit Theorems for Sums of Independent Variables Taking into Account Large Deviations.~I
\jour Teor. Veroyatnost. i Primenen.
\yr 1961
\vol 6
\issue 2
\pages 145--163
\mathnet{http://mi.mathnet.ru/tvp4763}
\transl
\jour Theory Probab. Appl.
\yr 1961
\vol 6
\issue 2
\pages 131--148
\crossref{https://doi.org/10.1137/1106019}


Linking options:
  • http://mi.mathnet.ru/eng/tvp4763
  • http://mi.mathnet.ru/eng/tvp/v6/i2/p145

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles
    Cycle of papers

    This publication is cited in the following articles:
    1. Theory Probab. Appl., 48:3 (2004), 528–535  mathnet  crossref  crossref  mathscinet  zmath  isi
    2. D. V. Batkovich, “Local limit theorems for large deviations”, J. Math. Sci. (N. Y.), 188:6 (2013), 641–654  mathnet  crossref  mathscinet
    3. Lifshits M.A. Nikitin Ya.Yu. Petrov V.V. Zaitsev A.Yu. Zinger A.A., “Toward the History of the Saint Petersburg School of Probability and Statistics. i. Limit Theorems For Sums of Independent Random Variables”, Vestnik St. Petersburg Univ. Math., 51:2 (2018), 144–163  crossref  isi
  • Теория вероятностей и ее применения Theory of Probability and its Applications
    Number of views:
    This page:85
    Full text:48

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2021