RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Archive
Impact factor
Subscription
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Teor. Veroyatnost. i Primenen.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teor. Veroyatnost. i Primenen., 1960, Volume 5, Issue 1, Pages 132–134 (Mi tvp4820)  

Short Communications

Properties of Sample Functions of a Stationary Gaussian Process

R. L. Dobrushin

Moscow

Abstract: Let $\{\xi_t(\omega),-\infty<t<\infty\}$ be a separable stationary Gaussian process with a continuous correlation function. Then, the following alternative holds true:
1) either for almost all w the sample functions of the process $\xi_t(\omega)$ are continuous functions of $t$.
2) or there exists a $\beta>0$ such that for almost all $\omega$ the sample function $\xi_t(\omega)$ is such that
$$\varlimsup_{t\to t_0}\xi_t(\omega)-\varliminf_{t\to t_0}\xi_t(\omega)\geq\beta$$
for any $t_0$.
In the second case almost all sample functions have no points of first order discontinuities.

Full text: PDF file (410 kB)

English version:
Theory of Probability and its Applications, 1960, 5:1, 120–122

Received: 18.11.1959

Citation: R. L. Dobrushin, “Properties of Sample Functions of a Stationary Gaussian Process”, Teor. Veroyatnost. i Primenen., 5:1 (1960), 132–134; Theory Probab. Appl., 5:1 (1960), 120–122

Citation in format AMSBIB
\Bibitem{Dob60}
\by R.~L.~Dobrushin
\paper Properties of Sample Functions of a Stationary Gaussian Process
\jour Teor. Veroyatnost. i Primenen.
\yr 1960
\vol 5
\issue 1
\pages 132--134
\mathnet{http://mi.mathnet.ru/tvp4820}
\transl
\jour Theory Probab. Appl.
\yr 1960
\vol 5
\issue 1
\pages 120--122
\crossref{https://doi.org/10.1137/1105012}


Linking options:
  • http://mi.mathnet.ru/eng/tvp4820
  • http://mi.mathnet.ru/eng/tvp/v5/i1/p132

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles
  • Теория вероятностей и ее применения Theory of Probability and its Applications
    Number of views:
    This page:76
    Full text:45

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2020