Teoriya Veroyatnostei i ee Primeneniya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Subscription
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Teor. Veroyatnost. i Primenen.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teor. Veroyatnost. i Primenen., 2016, Volume 61, Issue 2, Pages 348–364 (Mi tvp5059)  

Linear stochastic differential equation in the Banach space

B. Mamporia

Muskhelishvili Institute of Computational Mathematics

Abstract: A linear stochastic differential equation in an arbitrary separable Banach space is considered. To solve this equation, the corresponding linear stochastic differential equation for generalized random processes is constructed and its solution is produced as a generalized Itô process. The conditions under which the received generalized random process is the Itô process in a Banach space are found, and thus the solution of the considered linear stochastic differential equation is obtained. The heart of this approach is the conversion of the main equation in a Banach space to the equation for generalized random processes, to find the generalized solution, and then to learn the conditions under which the obtained generalized random process is the random process with values in a Banach space.

DOI: https://doi.org/10.4213/tvp5059

Full text: PDF file (212 kB)
References: PDF file   HTML file

English version:
Theory of Probability and its Applications, 2017, 61:2, 295–308

Bibliographic databases:

Received: 19.12.2013
Revised: 21.09.2015

Citation: B. Mamporia, “Linear stochastic differential equation in the Banach space”, Teor. Veroyatnost. i Primenen., 61:2 (2016), 348–364; Theory Probab. Appl., 61:2 (2017), 295–308

Citation in format AMSBIB
\Bibitem{Mam16}
\by B.~Mamporia
\paper Linear stochastic differential equation in the Banach space
\jour Teor. Veroyatnost. i Primenen.
\yr 2016
\vol 61
\issue 2
\pages 348--364
\mathnet{http://mi.mathnet.ru/tvp5059}
\crossref{https://doi.org/10.4213/tvp5059}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=3626786}
\elib{https://elibrary.ru/item.asp?id=26604213}
\transl
\jour Theory Probab. Appl.
\yr 2017
\vol 61
\issue 2
\pages 295--308
\crossref{https://doi.org/10.1137/S0040585X97T988150}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000404120400006}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85021218816}


Linking options:
  • http://mi.mathnet.ru/eng/tvp5059
  • https://doi.org/10.4213/tvp5059
  • http://mi.mathnet.ru/eng/tvp/v61/i2/p348

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles
  • Теория вероятностей и ее применения Theory of Probability and its Applications
    Number of views:
    This page:194
    Full text:33
    References:22
    First page:7

     
    Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2022