RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Archive
Impact factor
Subscription
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Teor. Veroyatnost. i Primenen.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teor. Veroyatnost. i Primenen., 2018, Volume 63, Issue 3, Pages 545–564 (Mi tvp5174)  

Exact bounds on the truncated-tilted mean, with applications

I. Pinelis

Department of Mathematical Sciences, Michigan Technological University, Houghton, MI, USA

Abstract: Exact upper bounds for ${{E} Xe^{h(X\wedge w)}}/{{E} e^{h(X\wedge w)}}$, which is the expectation of the Cramér transform of the so-called Winsorized-tilted mean of a random variable, are given in terms of its first two moments. Such results are needed in work with nonuniform Berry–Esseen-type bounds for general nonlinear statistics. As another application, optimal upper bounds on the Bayes posterior mean are provided. Certain monotonicity properties of the tilted mean are also presented.

Keywords: exact bound, Winsorization, truncation, large deviation, nonuniform Berry–Esseen-type bounds, Cramér transform, monotonicity, Bayes posterior mean.

DOI: https://doi.org/10.4213/tvp5174

Full text: PDF file (585 kB)
First page: PDF file
References: PDF file   HTML file

English version:
Theory of Probability and its Applications, 2019, 63:3, 447–463

Bibliographic databases:

Received: 05.04.2016
Revised: 17.04.2018
Accepted:20.12.2017
Language:

Citation: I. Pinelis, “Exact bounds on the truncated-tilted mean, with applications”, Teor. Veroyatnost. i Primenen., 63:3 (2018), 545–564; Theory Probab. Appl., 63:3 (2019), 447–463

Citation in format AMSBIB
\Bibitem{Pin18}
\by I.~Pinelis
\paper Exact bounds on the truncated-tilted mean, with applications
\jour Teor. Veroyatnost. i Primenen.
\yr 2018
\vol 63
\issue 3
\pages 545--564
\mathnet{http://mi.mathnet.ru/tvp5174}
\crossref{https://doi.org/10.4213/tvp5174}
\elib{http://elibrary.ru/item.asp?id=35276556}
\transl
\jour Theory Probab. Appl.
\yr 2019
\vol 63
\issue 3
\pages 447--463
\crossref{https://doi.org/10.1137/S0040585X97T989167}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000457753200008}
\scopus{http://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85064625359}


Linking options:
  • http://mi.mathnet.ru/eng/tvp5174
  • https://doi.org/10.4213/tvp5174
  • http://mi.mathnet.ru/eng/tvp/v63/i3/p545

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles
  • Теория вероятностей и ее применения Theory of Probability and its Applications
    Number of views:
    This page:64
    References:9
    First page:3

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2019