Teoriya Veroyatnostei i ee Primeneniya
General information
Latest issue
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

Latest issue
Current issues
Archive issues
What is RSS

Teor. Veroyatnost. i Primenen.:

Personal entry:
Save password
Forgotten password?

Teor. Veroyatnost. i Primenen., 2019, Volume 64, Issue 2, Pages 228–257 (Mi tvp5234)  

This article is cited in 2 scientific papers (total in 3 papers)

Approximate Wiener–Hopf factorization and the Monte Carlo methods for Lévy processes

O. E. Kudryavtsev

Rostov Branch of Russian Customs Academy

Abstract: In the present paper, we justify the convergence formulas for approximate Wiener–Hopf factorization to exact formulas for factors from a broad class of Lévy processes. Another result obtained here is the analysis of the convergence of Monte Carlo methods that are based on time randomization and explicit Wiener–Hopf factorization formulas. The paper puts forward two generalized approaches to the construction of a Monte Carlo method in the case of Lévy models that do not admit explicit Wiener–Hopf factorization. Both methods depend on approximate formulas that do for Wiener–Hopf factors. In the first approach, the simulation of the supremum and infimum processes at exponentially distributed time moments is effected by inverting their approximate cumulative distribution functions. The second approach, which does not require a partition of the path, involves direct simulation of terminal values of the infimum (supremum) process, and can be used for the simulation of the joint distribution of a Lévy process and the corresponding extrema of the process.

Keywords: Lévy processes, Wiener–Hopf factorization, numerical methods, Monte Carlo methods, the Laplace transform.

Funding Agency Grant Number
Russian Foundation for Basic Research 18-01-00910
This work was supported by the Russian Foundation for Basic Research (grant 18-01-00910).

DOI: https://doi.org/10.4213/tvp5234

Full text: PDF file (631 kB)
First page: PDF file
References: PDF file   HTML file

English version:
Theory of Probability and its Applications, 2019, 64:2, 186–208

Bibliographic databases:

Received: 18.06.2018
Revised: 22.11.2018

Citation: O. E. Kudryavtsev, “Approximate Wiener–Hopf factorization and the Monte Carlo methods for Lévy processes”, Teor. Veroyatnost. i Primenen., 64:2 (2019), 228–257; Theory Probab. Appl., 64:2 (2019), 186–208

Citation in format AMSBIB
\by O.~E.~Kudryavtsev
\paper Approximate Wiener--Hopf factorization and the Monte Carlo methods for L\'evy processes
\jour Teor. Veroyatnost. i Primenen.
\yr 2019
\vol 64
\issue 2
\pages 228--257
\jour Theory Probab. Appl.
\yr 2019
\vol 64
\issue 2
\pages 186--208

Linking options:
  • http://mi.mathnet.ru/eng/tvp5234
  • https://doi.org/10.4213/tvp5234
  • http://mi.mathnet.ru/eng/tvp/v64/i2/p228

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru

    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. Beliaysky G., Danilova N., Ougolnitsky G., “Calculation of Probability of the Exit of a Stochastic Process From a Band By Monte-Carlo Method: a Wiener-Hopf Factorization”, Mathematics, 7:7 (2019), 581  crossref  isi
    2. “Abstracts of talks given at the 4th International Conference on Stochastic Methods”, Theory Probab. Appl., 65:1 (2020), 121–172  mathnet  crossref  crossref  isi  elib
    3. O. Kudryavtsev, P. Luzhetskaya, “The Wiener-Hopf factorization for pricing options made easy”, Eng. Lett., 28:4 (2020), 1310–1317  isi
  • Теория вероятностей и ее применения Theory of Probability and its Applications
    Number of views:
    This page:168
    First page:12

    Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2021