RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Archive
Impact factor
Subscription
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Teor. Veroyatnost. i Primenen.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teor. Veroyatnost. i Primenen., 2019, Volume 64, Issue 2, Pages 283–307 (Mi tvp5243)  

Branching random walks on $\mathbf{Z}^d$ with periodic branching sources

M. V. Platonovaab, K. S. Ryadovkinc

a St. Petersburg Department of Steklov Mathematical Institute of Russian Academy of Sciences
b Chebyshev Laboratory, St. Petersburg State University, Department of Mathematics and Mechanics
c Saint Petersburg State University

Abstract: We consider a continuous-time branching random walk on $\mathbf{Z}^d$ with birth and death of particles at a periodic set of points (the sources of branching). Spectral properties of the evolution operator of the mean number of particles at an arbitrary point of the lattice are studied. The leading term of the asymptotics as $t\to\infty$ of the mean number of particles at a given point is obtained. Under an additional moment condition, an asymptotic series expansion of the mean number of particles is derived.

Keywords: branching random walk, periodic perturbation, evolution equation.

Funding Agency Grant Number
Russian Science Foundation 17-11-01136
This research was carried out with the financial support of the Russian Science Foundation (grant 17-11-01136).


DOI: https://doi.org/10.4213/tvp5243

Full text: PDF file (589 kB)
First page: PDF file
References: PDF file   HTML file

English version:
Theory of Probability and its Applications, 2019, 64:2, 229–248

Bibliographic databases:

Received: 23.03.2018
Revised: 17.07.2018
Accepted:29.08.2018

Citation: M. V. Platonova, K. S. Ryadovkin, “Branching random walks on $\mathbf{Z}^d$ with periodic branching sources”, Teor. Veroyatnost. i Primenen., 64:2 (2019), 283–307; Theory Probab. Appl., 64:2 (2019), 229–248

Citation in format AMSBIB
\Bibitem{PlaRya19}
\by M.~V.~Platonova, K.~S.~Ryadovkin
\paper Branching random walks on $\mathbf{Z}^d$ with periodic branching sources
\jour Teor. Veroyatnost. i Primenen.
\yr 2019
\vol 64
\issue 2
\pages 283--307
\mathnet{http://mi.mathnet.ru/tvp5243}
\crossref{https://doi.org/10.4213/tvp5243}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=3943121}
\zmath{https://zbmath.org/?q=an:07099810}
\elib{http://elibrary.ru/item.asp?id=37298295}
\transl
\jour Theory Probab. Appl.
\yr 2019
\vol 64
\issue 2
\pages 229--248
\crossref{https://doi.org/10.1137/S0040585X97T989465}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000478971000004}
\scopus{http://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85070956038}


Linking options:
  • http://mi.mathnet.ru/eng/tvp5243
  • https://doi.org/10.4213/tvp5243
  • http://mi.mathnet.ru/eng/tvp/v64/i2/p283

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles
  • Теория вероятностей и ее применения Theory of Probability and its Applications
    Number of views:
    This page:111
    References:14
    First page:13

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2020