Teoriya Veroyatnostei i ee Primeneniya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Subscription
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Teor. Veroyatnost. i Primenen.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teor. Veroyatnost. i Primenen., 2019, Volume 64, Issue 2, Pages 328–357 (Mi tvp5252)  

The Tanaka formula for symmetric stable processes with index $\alpha $, $0<\alpha <2$

H.-J. Engelberta, V. P. Kurenokb

a Institute of Mathematics, Friedrich Schiller University of Jena, Jena, Germany
b Department of Electrical and Systems Engineering, Washington University in St. Louis, St. Louis, MO, USA

Abstract: For a symmetric stable process $Z=(Z_t)_{t\ge0}$ of index $0<\alpha<2$, any $a\in\mathbf{R}$, and $\gamma\in(0,2)$ satisfying $\alpha-1<\gamma<\alpha$, we give the explicit form of the Doob–Meyer decomposition of the submartingale $|Z-a|^\gamma=(|Z_t-a|^{\gamma})_{t\ge0}$, which consists of $|a|^{\gamma}$, a stochastic integral with respect to the compensated Poisson random measure associated with $Z$, and a predictable increasing process. If $1<\alpha<2$, then the case $\gamma=\alpha-1$, corresponding to the famous Tanaka formula, is also considered. This extends results of Salminen and Yor [Tanaka formula for symmetric Lévy processes, in Séminaire de Probabilités XL, Springer, 2007, pp. 265–285] to general indexes $0<\alpha<2$ using a different approach. Related works are [H. Tanaka, Z. Wahrsch. Verw. Geb., 1 (1963), pp. 251–257], [P. Fitzsimmons and R. K. Getoor, Ann. Inst. H. Poincaré Probab. Statist., 28 (1992), pp. 311–333], [T. Yamada, Tanaka Formula for Symmetric Stable Processes of Index $\alpha$, $1<\alpha<2$, manuscript, 1997], and [K. Yamada, Fractional derivatives of local times of $\alpha$-stable Lévy processes as the limits of occupation time problems, in Limit Theorems in Probability and Statistics, Vol. II, János Bolyai Math. Soc., 2002, pp. 553–573].

Keywords: symmetric stable processes, Tanaka's formula, mollifiers, Fourier transform.

DOI: https://doi.org/10.4213/tvp5252

Full text: PDF file (616 kB)
First page: PDF file
References: PDF file   HTML file

English version:
Theory of Probability and its Applications, 2019, 64:2, 264–289

Bibliographic databases:

Received: 08.10.2018
Accepted:18.10.2018
Language:

Citation: H.-J. Engelbert, V. P. Kurenok, “The Tanaka formula for symmetric stable processes with index $\alpha $, $0<\alpha <2$”, Teor. Veroyatnost. i Primenen., 64:2 (2019), 328–357; Theory Probab. Appl., 64:2 (2019), 264–289

Citation in format AMSBIB
\Bibitem{EngKur19}
\by H.-J.~Engelbert, V.~P.~Kurenok
\paper The Tanaka formula for symmetric stable processes with index $\alpha $, $0<\alpha <2$
\jour Teor. Veroyatnost. i Primenen.
\yr 2019
\vol 64
\issue 2
\pages 328--357
\mathnet{http://mi.mathnet.ru/tvp5252}
\crossref{https://doi.org/10.4213/tvp5252}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=3943123}
\zmath{https://zbmath.org/?q=an:07099812}
\elib{https://elibrary.ru/item.asp?id=37298297}
\transl
\jour Theory Probab. Appl.
\yr 2019
\vol 64
\issue 2
\pages 264--289
\crossref{https://doi.org/10.1137/S0040585X97T989489}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000478971000006}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85070977294}


Linking options:
  • http://mi.mathnet.ru/eng/tvp5252
  • https://doi.org/10.4213/tvp5252
  • http://mi.mathnet.ru/eng/tvp/v64/i2/p328

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles
  • Теория вероятностей и ее применения Theory of Probability and its Applications
    Number of views:
    This page:138
    References:16
    First page:13

     
    Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2021