Teoriya Veroyatnostei i ee Primeneniya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Subscription
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Teor. Veroyatnost. i Primenen.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teor. Veroyatnost. i Primenen., 2019, Volume 64, Issue 3, Pages 573–577 (Mi tvp5306)  

Short Communications

Statistical estimate of the traffic coefficient for a multichannel queueing system with regenerative input flow

G. A. Krylova

Lomonosov Moscow State University, Faculty of Mechanics and Mathematics

Abstract: The paper is concerned with a multichannel queueing system with regenerative input flow Reg/G/m under the conditions of existence of the limit regime. A statistical estimate for the system traffic coefficient is proposed, and its consistency is proved.

Keywords: regenerative input flow, multichannel queueing system, traffic coefficient, consistent estimate.

DOI: https://doi.org/10.4213/tvp5306

Full text: PDF file (312 kB)
First page: PDF file
References: PDF file   HTML file

English version:
Theory of Probability and its Applications, 2019, 64:3, 461–464

Bibliographic databases:

Received: 04.04.2019
Accepted:11.07.2019

Citation: G. A. Krylova, “Statistical estimate of the traffic coefficient for a multichannel queueing system with regenerative input flow”, Teor. Veroyatnost. i Primenen., 64:3 (2019), 573–577; Theory Probab. Appl., 64:3 (2019), 461–464

Citation in format AMSBIB
\Bibitem{Kry19}
\by G.~A.~Krylova
\paper Statistical estimate of the traffic coefficient for a multichannel queueing system with regenerative input flow
\jour Teor. Veroyatnost. i Primenen.
\yr 2019
\vol 64
\issue 3
\pages 573--577
\mathnet{http://mi.mathnet.ru/tvp5306}
\crossref{https://doi.org/10.4213/tvp5306}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=3988275}
\zmath{https://zbmath.org/?q=an:1426.90074}
\elib{https://elibrary.ru/item.asp?id=38590359}
\transl
\jour Theory Probab. Appl.
\yr 2019
\vol 64
\issue 3
\pages 461--464
\crossref{https://doi.org/10.1137/S0040585X97T989611}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000492370500009}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85074370620}


Linking options:
  • http://mi.mathnet.ru/eng/tvp5306
  • https://doi.org/10.4213/tvp5306
  • http://mi.mathnet.ru/eng/tvp/v64/i3/p573

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles
  • Теория вероятностей и ее применения Theory of Probability and its Applications
    Number of views:
    This page:123
    References:12
    First page:8

     
    Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2022