|
This article is cited in 9 scientific papers (total in 9 papers)
Short Communications
On the closeness of the distributions of the two sums of independent random variables
V. M. Zolotarev Moscow
Abstract:
Let $\{\xi_j\}$, $j=1,2,…,n$ (resp. $\{\eta_j\}$, $j=1,2,…,n$) be independent random variables with distribution functions $\{F_j\}$, $j=1,2,…,n$ (resp. $\{G_j\}$, $j=1,2,…,n$) and let $F$ (resp. $G$) be the distribution function of the sum $\xi=\xi_1+…+\xi_n$ (resp. $\eta=\eta_1+…+\eta_n$).
Let us denote
$$
\mu(k)=\sum_{j=1}^n|\int x^kd(F_j-G_j)|,\quad \nu(r)=\sum_{j=1}^n\int|x|^r|d(F_j-G_j)|.
$$
We suppose that $\mu(0)=\mu(1)=…=\mu(m)=0$ and $\nu(r)$ exist for some $r$, $m\le r\le m+1$. In this case
a) if the distribution of $\eta$ has a density bounded by a constant $q$, then
$$
|F(x)-G(x)|<C[\nu(r)q^r]^\frac1{1+r},\eqno{(\text*)}
$$
b) if $F$ and $G$ are lattice distributions with the same points of discontinuity and the same largest common factor of the length of the intervals between jumps $h$, then
$$
|F(x)-G(x)|<C_1[\nu(r)h^{-r}]\eqno{(**)}
$$
where $C$ and $C_1$ are constants depending only on $m$ and $r$.
In the case a) an estimation of the type (**), which is better then one of the type (*) can be achieved only when some additional requirements on $\xi_j$ are satisfied. The estimations (*) and (**) make it possible to formulate some sufficient conditions for $F$ to converge to infinitely divisible distribution $G$ when the summands $\xi_j$ are not necessarily uniformly infinitesimal.
Full text:
PDF file (1594 kB)
English version:
Theory of Probability and its Applications, 1965, 10:3, 472–479
Bibliographic databases:
Received: 10.05.1965
Citation:
V. M. Zolotarev, “On the closeness of the distributions of the two sums of independent random variables”, Teor. Veroyatnost. i Primenen., 10:3 (1965), 519–526; Theory Probab. Appl., 10:3 (1965), 472–479
Citation in format AMSBIB
\Bibitem{Zol65}
\by V.~M.~Zolotarev
\paper On the closeness of the distributions of the two sums of independent random variables
\jour Teor. Veroyatnost. i Primenen.
\yr 1965
\vol 10
\issue 3
\pages 519--526
\mathnet{http://mi.mathnet.ru/tvp547}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=189109}
\zmath{https://zbmath.org/?q=an:0214.17402}
\transl
\jour Theory Probab. Appl.
\yr 1965
\vol 10
\issue 3
\pages 472--479
\crossref{https://doi.org/10.1137/1110055}
Linking options:
http://mi.mathnet.ru/eng/tvp547 http://mi.mathnet.ru/eng/tvp/v10/i3/p519
Citing articles on Google Scholar:
Russian citations,
English citations
Related articles on Google Scholar:
Russian articles,
English articles
This publication is cited in the following articles:
-
V. I. Rotar', “On summation of independent variables in a non-classical situation”, Russian Math. Surveys, 37:6 (1982), 151–175
-
V. Yu. Korolev, I. G. Shevtsova, “An upper estimate for the absolute constant in the Berry–Esseen inequality”, Theory Probab. Appl., 54:4 (2010), 638–658
-
Tyurin I.S., “On the accuracy of the Gaussian approximation”, Doklady Mathematics, 80:3 (2009), 840–843
-
Paulauskas V., “On the rate of convergence to bivariate stable laws”, Lithuanian Mathematical Journal, 49:4 (2009), 426–445
-
I. G. Shevtsova, “Nekotorye otsenki dlya kharakteristicheskikh funktsii s primeneniem k utochneniyu neravenstva Mizesa”, Inform. i ee primen., 3:3 (2009), 69–78
-
I. S. Tyurin, “On the convergence rate in Lyapunov's theorem”, Theory Probab. Appl., 55:2 (2011), 253–270
-
Korolev V. Shevtsova I., “An Improvement of the Berry-Esseen Inequality with Applications to Poisson and Mixed Poisson Random Sums”, Scand. Actuar. J., 2012, no. 2, 81–105
-
Shevtsova I., “On the Accuracy of the Approximation of the Complex Exponent by the First Terms of its Taylor Expansion with Applications”, J. Math. Anal. Appl., 418:1 (2014), 185–210
-
Bobkov S.G., “Asymptotic Expansions For Products of Characteristic Functions Under Moment Assumptions of Non-Integer Orders”, Convexity and Concentration, IMA Volumes in Mathematics and Its Applications, 161, ed. Carlen E. Madiman M. Werner E., Springer, 2017, 297–357
|
Number of views: |
This page: | 294 | Full text: | 141 |
|