RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Archive
Impact factor
Subscription
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Teor. Veroyatnost. i Primenen.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teor. Veroyatnost. i Primenen., 1966, Volume 11, Issue 1, Pages 161–169 (Mi tvp576)  

Short Communications

Some extremal problems in the queueing theory

B. A. Rogozin

Novosibirsk

Abstract: The simplest queueing systems are considered. It is supposed that the periods of time between two succesive arrivals of the calls $\tau_1,\tau_2,…,\tau_n,…$ as well as the service times $\eta_1,\eta_2,…,\eta_n,…$ are independent identically distributed random variables, with $\eta_1,\eta_2,…,\eta_n$ being independent of $\tau_1,\tau_2,…,\tau_n,…$.
In the case of queueing systems it is established that when the usual conditions are satisfied, the distribution of $\tau_1$ is fixed and $\mathbf E\eta_1=\alpha$, the greatest lower bound of the expectation of the limit distribution of the waiting time $\mathbf EW$ is attained on the distribution $\mathbf P\{\eta_1=\alpha\}=1$. The similar question concerning $\mathbf EW$ is considered when the distribution of $\eta_1$ is fixed and $\mathbf E\tau_1=\beta$. Besides in the same situation an upper estimate for $\mathbf EW$ is given.
In the case of systems with losses of calls it is established that the extrema of the probability to be served when the distribution of $\tau_1$ is fixed and $\mathbf E\eta_1=\alpha$ is attained on, the distributions of $\eta_1$ such that $\mathbf P\{\eta_1=x_1\}+\mathbf P\{\eta_2=x_2\}=1$ for some $x_1\ge0$, $x_2\ge0$.

Full text: PDF file (474 kB)

English version:
Theory of Probability and its Applications, 1966, 11:1, 144–151

Bibliographic databases:

Received: 02.02.1965

Citation: B. A. Rogozin, “Some extremal problems in the queueing theory”, Teor. Veroyatnost. i Primenen., 11:1 (1966), 161–169; Theory Probab. Appl., 11:1 (1966), 144–151

Citation in format AMSBIB
\Bibitem{Rog66}
\by B.~A.~Rogozin
\paper Some extremal problems in the queueing theory
\jour Teor. Veroyatnost. i Primenen.
\yr 1966
\vol 11
\issue 1
\pages 161--169
\mathnet{http://mi.mathnet.ru/tvp576}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=193689}
\zmath{https://zbmath.org/?q=an:0147.36805}
\transl
\jour Theory Probab. Appl.
\yr 1966
\vol 11
\issue 1
\pages 144--151
\crossref{https://doi.org/10.1137/1111011}


Linking options:
  • http://mi.mathnet.ru/eng/tvp576
  • http://mi.mathnet.ru/eng/tvp/v11/i1/p161

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles
  • Теория вероятностей и ее применения Theory of Probability and its Applications
    Number of views:
    This page:349
    Full text:127
    First page:3

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2020