RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Archive
Impact factor
Subscription
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Teor. Veroyatnost. i Primenen.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teor. Veroyatnost. i Primenen., 1965, Volume 10, Issue 4, Pages 713–726 (Mi tvp582)  

This article is cited in 6 scientific papers (total in 6 papers)

Различение близких гипотез о виде плотности распределения в схеме обобщенного последовательного критерия

S. A. Aivazyan

Moscow

Abstract: The statistical problem of the distinguishing between two hypotheses $H_0$ (the theoretical density of probability is $f(x;0)$) and $H_\theta$ (the theoretical density of probability is $f(x,\theta)$) is considered. It is assumed that an unknown $p$-dimensional parameter may be equal to one of two alternative values 0 and $\theta$ or to some “intermediate” value $\theta_\lambda$.
One approximate variant of the optimum generalized probability ratio test is suggested in this paper. It is shown that the optimum properties of this test are highly near to “ideal” and that the test is better than Wald sequential test.

Full text: PDF file (805 kB)

English version:
Theory of Probability and its Applications, 1965, 10:4, 646–658

Bibliographic databases:

Received: 04.08.1965

Citation: S. A. Aivazyan, “Различение близких гипотез о виде плотности распределения в схеме обобщенного последовательного критерия”, Teor. Veroyatnost. i Primenen., 10:4 (1965), 713–726; Theory Probab. Appl., 10:4 (1965), 646–658

Citation in format AMSBIB
\Bibitem{Aiv65}
\by S.~A.~Aivazyan
\paper Различение близких гипотез о виде плотности распределения в схеме обобщенного последовательного критерия
\jour Teor. Veroyatnost. i Primenen.
\yr 1965
\vol 10
\issue 4
\pages 713--726
\mathnet{http://mi.mathnet.ru/tvp582}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=191061}
\zmath{https://zbmath.org/?q=an:0158.18002}
\transl
\jour Theory Probab. Appl.
\yr 1965
\vol 10
\issue 4
\pages 646--658
\crossref{https://doi.org/10.1137/1110078}


Linking options:
  • http://mi.mathnet.ru/eng/tvp582
  • http://mi.mathnet.ru/eng/tvp/v10/i4/p713

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. Grodzenskii Ya.S., “Izmerenie pokazatelei kachestva putem ratsionalizatsii protsedury statisticheskogo regulirovaniya tekhnologicheskikh protsessov”, Izmeritelnaya tekhnika, 2009, no. 7, 15–16
    2. Grodzenskii S.Ya., Chesalin A.N., “Kontrol pokazatelei nadezhnosti vysokonadezhnykh izdelii s ispolzovaniem optimalnykh statisticheskikh posledovatelnykh kriteriev”, Metrologiya, 2011, no. 10, 29–34  elib
    3. Grodzenskii S.Ya., Sergienko N.S., Chesalin A.N., “Statistiko-fizicheskii metod izmereniya nadezhnosti s ispolzovaniem posledovatelnykh kriteriev”, Metrologiya, 2011, no. 11, 3–7  elib
    4. Grodzenskii S.Ya., Grodzenskii Ya.S., Sergienko N.S., Chesalin A.N., “Metod analiza nadezhnosti vysokonadezhnykh ob'ektov”, Innovatsii na osnove informatsionnykh i kommunikatsionnykh tekhnologii, 2011, no. 1, 321–323  elib
    5. Grodzenskii S.Ya., Grodzenskii Ya.S., “Zadacha kifera-veisa v nauke i tekhnike”, Metody menedzhmenta kachestva, 2012, no. 5, 48–52  elib
    6. Grodzenskii Ya.S., Chesalin A.N., “Primenenie optimalnykh statisticheskikh posledovatelnykh kriteriev dlya kontrolya vysokonadezhnykh izdelii”, Innovatsionnye informatsionnye tekhnologii, 2012, no. 1, 401–403  elib
  • Теория вероятностей и ее применения Theory of Probability and its Applications
    Number of views:
    This page:320
    Full text:144
    First page:1

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2020