RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Archive
Impact factor
Subscription
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Teor. Veroyatnost. i Primenen.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teor. Veroyatnost. i Primenen., 2006, Volume 51, Issue 2, Pages 374–382 (Mi tvp59)  

This article is cited in 3 scientific papers (total in 3 papers)

Short Communications

Asymptotic properties of conditional quantiles for a class of symmetric distributions

E. M. Knutova, S. Ya. Shatskikh

Samara State University

Abstract: This paper is devoted to studying the asymptotic properties of conditional distributions for one class of symmetric measures on space $\textbf R^\infty$. Explicit formulae of infinite-dimensional conditional quantiles are obtained for distributions of this class.

Keywords: symmetric measures, de Finetti's theorem, conditional distributions, transformations of independence, conditional quantiles, almost sure convergence.

DOI: https://doi.org/10.4213/tvp59

Full text: PDF file (873 kB)
References: PDF file   HTML file

English version:
Theory of Probability and its Applications, 2007, 51:2, 350–358

Bibliographic databases:

Received: 21.05.2001
Revised: 10.02.2006

Citation: E. M. Knutova, S. Ya. Shatskikh, “Asymptotic properties of conditional quantiles for a class of symmetric distributions”, Teor. Veroyatnost. i Primenen., 51:2 (2006), 374–382; Theory Probab. Appl., 51:2 (2007), 350–358

Citation in format AMSBIB
\Bibitem{KnuSha06}
\by E.~M.~Knutova, S.~Ya.~Shatskikh
\paper Asymptotic properties of conditional quantiles for a class of symmetric distributions
\jour Teor. Veroyatnost. i Primenen.
\yr 2006
\vol 51
\issue 2
\pages 374--382
\mathnet{http://mi.mathnet.ru/tvp59}
\crossref{https://doi.org/10.4213/tvp59}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=2324207}
\zmath{https://zbmath.org/?q=an:1127.60013}
\elib{http://elibrary.ru/item.asp?id=9242428}
\transl
\jour Theory Probab. Appl.
\yr 2007
\vol 51
\issue 2
\pages 350--358
\crossref{https://doi.org/10.1137/S0040585X97982359}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000248083200010}
\elib{http://elibrary.ru/item.asp?id=13564158}
\scopus{http://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-34447571953}


Linking options:
  • http://mi.mathnet.ru/eng/tvp59
  • https://doi.org/10.4213/tvp59
  • http://mi.mathnet.ru/eng/tvp/v51/i2/p374

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. E. A. Savinov, “Predelnaya teorema dlya kopul preobrazovanii nezavisimosti $t$-raspredeleniya Styudenta”, Vestn. SamGU. Estestvennonauchn. ser., 2011, no. 8(89), 69–85  mathnet  elib
    2. “International conference on stochastic methods (Abstracts)”, Theory Probab. Appl., 62:4 (2018), 640–674  mathnet  crossref  crossref  isi  elib
    3. L. E. Melkumova, S. Ya. Shatskikh, “Maximum likelihood method in de Finetti's theorem”, Theory Probab. Appl., 63:4 (2019), 657–663  mathnet  crossref  crossref  isi  elib
  • Теория вероятностей и ее применения Theory of Probability and its Applications
    Number of views:
    This page:299
    Full text:68
    References:53

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2020