Teoriya Veroyatnostei i ee Primeneniya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Subscription
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Teor. Veroyatnost. i Primenen.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teor. Veroyatnost. i Primenen., 2006, Volume 51, Issue 2, Pages 433–443 (Mi tvp67)  

Short Communications

On the CLT for means under the rotation action. II

M. Weber

Institut de Recherche Mathématique Avancée, Université de Strasbourg

Abstract: We propose a method allowing us to build, for various typical means generated by the action of any given irrational rotation of the circle, examples of $L^2$ functions satisfying the central limit theorem (CLT). We consider for instance nonlinear means, and means along the sequence of squares. In the latter case, the circle method of Hardy–Littlewood is used. We also give an example of continuous Gaussian random Fourier series with sample paths satisfying both CLT and almost sure CLT.

Keywords: central limit theorem, almost sure central limit theorem, irrational rotations, nonlinear averages, square averages, weighted averages, Gaussian randomization, random Fourier series, circle method.

DOI: https://doi.org/10.4213/tvp67

Full text: PDF file (922 kB)
References: PDF file   HTML file

English version:
Theory of Probability and its Applications, 2007, 51:2, 377–387

Bibliographic databases:

Received: 10.09.2003
Revised: 29.03.2005
Language:

Citation: M. Weber, “On the CLT for means under the rotation action. II”, Teor. Veroyatnost. i Primenen., 51:2 (2006), 433–443; Theory Probab. Appl., 51:2 (2007), 377–387

Citation in format AMSBIB
\Bibitem{Web06}
\by M.~Weber
\paper On the CLT for means under the rotation action.~II
\jour Teor. Veroyatnost. i Primenen.
\yr 2006
\vol 51
\issue 2
\pages 433--443
\mathnet{http://mi.mathnet.ru/tvp67}
\crossref{https://doi.org/10.4213/tvp67}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=2324215}
\zmath{https://zbmath.org/?q=an:1122.60029}
\elib{https://elibrary.ru/item.asp?id=9242436}
\transl
\jour Theory Probab. Appl.
\yr 2007
\vol 51
\issue 2
\pages 377--387
\crossref{https://doi.org/10.1137/S0040585X97982414}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000248083200014}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-34447564240}


Linking options:
  • http://mi.mathnet.ru/eng/tvp67
  • https://doi.org/10.4213/tvp67
  • http://mi.mathnet.ru/eng/tvp/v51/i2/p433

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles
    Cycle of papers
  • Теория вероятностей и ее применения Theory of Probability and its Applications
    Number of views:
    This page:162
    Full text:44
    References:28

     
    Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2021