|
This article is cited in 1 scientific paper (total in 1 paper)
Short Communications
On Random Matrices
G. V. Balakin Moscow
Abstract:
The present paper is devoted to the calculation of the probability distribution of the maximal number of units in independent positions in a random square matrix.
Full text:
PDF file (394 kB)
English version:
Theory of Probability and its Applications, 1967, 12:2, 301–307
Bibliographic databases:
Received: 08.04.1966
Citation:
G. V. Balakin, “On Random Matrices”, Teor. Veroyatnost. i Primenen., 12:2 (1967), 346–353; Theory Probab. Appl., 12:2 (1967), 301–307
Citation in format AMSBIB
\Bibitem{Bal67}
\by G.~V.~Balakin
\paper On Random Matrices
\jour Teor. Veroyatnost. i Primenen.
\yr 1967
\vol 12
\issue 2
\pages 346--353
\mathnet{http://mi.mathnet.ru/tvp712}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=215327}
\zmath{https://zbmath.org/?q=an:0185.47303|0154.19501}
\transl
\jour Theory Probab. Appl.
\yr 1967
\vol 12
\issue 2
\pages 301--307
\crossref{https://doi.org/10.1137/1112034}
Linking options:
http://mi.mathnet.ru/eng/tvp712 http://mi.mathnet.ru/eng/tvp/v12/i2/p346
Citing articles on Google Scholar:
Russian citations,
English citations
Related articles on Google Scholar:
Russian articles,
English articles
This publication is cited in the following articles:
-
V. I. Kruglov, V. G. Mikhailov, “O range sluchainoi dvoichnoi matritsy s zadannymi vesami nezavisimykh strok”, Matem. vopr. kriptogr., 10:4 (2019), 67–76
|
Number of views: |
This page: | 232 | Full text: | 107 | First page: | 1 |
|