RUS  ENG ЖУРНАЛЫ   ПЕРСОНАЛИИ   ОРГАНИЗАЦИИ   КОНФЕРЕНЦИИ   СЕМИНАРЫ   ВИДЕОТЕКА   ПАКЕТ AMSBIB
Общая информация
Последний выпуск
Архив
Импакт-фактор
Подписка
Правила для авторов
Загрузить рукопись

Поиск публикаций
Поиск ссылок

RSS
Последний выпуск
Текущие выпуски
Архивные выпуски
Что такое RSS



Теория вероятн. и ее примен.:
Год:
Том:
Выпуск:
Страница:
Найти






Персональный вход:
Логин:
Пароль:
Запомнить пароль
Войти
Забыли пароль?
Регистрация


Теория вероятн. и ее примен., 1968, том 13, выпуск 1, страницы 155–159 (Mi tvp828)  

Эта публикация цитируется в 1 научной статье (всего в 1 статье)

Краткие сообщения

Некоторые неравенства для сумм многомерных случайных величин

А. А. Боровков

г. Новосибирск

Полный текст: PDF файл (1007 kB)

Англоязычная версия:
Theory of Probability and its Applications, 1968, 13:1, 156–160

Реферативные базы данных:

Поступила в редакцию: 10.10.1967

Образец цитирования: А. А. Боровков, “Некоторые неравенства для сумм многомерных случайных величин”, Теория вероятн. и ее примен., 13:1 (1968), 155–159; Theory Probab. Appl., 13:1 (1968), 156–160

Цитирование в формате AMSBIB
\RBibitem{Bor68}
\by А.~А.~Боровков
\paper Некоторые неравенства для сумм многомерных случайных величин
\jour Теория вероятн. и ее примен.
\yr 1968
\vol 13
\issue 1
\pages 155--159
\mathnet{http://mi.mathnet.ru/tvp828}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=222927}
\zmath{https://zbmath.org/?q=an:0196.19501}
\transl
\jour Theory Probab. Appl.
\yr 1968
\vol 13
\issue 1
\pages 156--160
\crossref{https://doi.org/10.1137/1113013}


Образцы ссылок на эту страницу:
  • http://mi.mathnet.ru/tvp828
  • http://mi.mathnet.ru/rus/tvp/v13/i1/p155

    ОТПРАВИТЬ: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    Эта публикация цитируется в следующих статьяx:
    1. А. А. Боровков, А. А. Могульский, “Экспоненциальные неравенства чебышевского типа для сумм случайных векторов и для траекторий случайных блужданий”, Теория вероятн. и ее примен., 56:1 (2011), 3–29  mathnet  crossref  mathscinet  zmath  elib; A. A. Borovkov, A. A. Mogul'skii, “Chebyshev type exponential inequalities for sums of random vectors and random walk trajectories”, Theory Probab. Appl., 56:1 (2012), 21–43  crossref  isi  elib
  • Теория вероятностей и ее применения Theory of Probability and its Applications
    Просмотров:
    Эта страница:228
    Полный текст:91
     
    Обратная связь:
     Пользовательское соглашение  Регистрация  Логотипы © Математический институт им. В. А. Стеклова РАН, 2020