RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Archive
Impact factor
Subscription
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Teor. Veroyatnost. i Primenen.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teor. Veroyatnost. i Primenen., 1968, Volume 13, Issue 3, Pages 512–517 (Mi tvp875)  

Short Communications

On random walk in Lobachevsky's plane

V. N. Tutubalin

Moscow

Abstract: Let $M$ be the Lobachevsky's plane, $G$ its translation group and $mg$ the result of a translation $g\in G$ applied to a point $m\in M$. Consider a sequence $g_1,g_2,…,g_n,…$ of independent identically distributed random elements of $G$, a point $m_0\in M$ and the distribution $m_0\mu^n$ of the random point $m_0g_1…g_n$. Approximations of $m_0\mu^n(A)$ are considered, $A$ being a rather complicated subset of $M$ constructed by means of a discrete subgroup of $G$.

Full text: PDF file (440 kB)

English version:
Theory of Probability and its Applications, 1968, 13:3, 487–490

Bibliographic databases:

Received: 10.01.1967

Citation: V. N. Tutubalin, “On random walk in Lobachevsky's plane”, Teor. Veroyatnost. i Primenen., 13:3 (1968), 512–517; Theory Probab. Appl., 13:3 (1968), 487–490

Citation in format AMSBIB
\Bibitem{Tut68}
\by V.~N.~Tutubalin
\paper On random walk in Lobachevsky's plane
\jour Teor. Veroyatnost. i Primenen.
\yr 1968
\vol 13
\issue 3
\pages 512--517
\mathnet{http://mi.mathnet.ru/tvp875}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=238366}
\zmath{https://zbmath.org/?q=an:0177.21703|0165.19601}
\transl
\jour Theory Probab. Appl.
\yr 1968
\vol 13
\issue 3
\pages 487--490
\crossref{https://doi.org/10.1137/1113060}


Linking options:
  • http://mi.mathnet.ru/eng/tvp875
  • http://mi.mathnet.ru/eng/tvp/v13/i3/p512

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles
  • Теория вероятностей и ее применения Theory of Probability and its Applications
    Number of views:
    This page:209
    Full text:86
    First page:3

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2020