RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Archive
Impact factor
Subscription
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Teor. Veroyatnost. i Primenen.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teor. Veroyatnost. i Primenen., 1998, Volume 43, Issue 1, Pages 161–166 (Mi tvp886)  

This article is cited in 5 scientific papers (total in 5 papers)

Short Communications

On the Cramér series coefficients

L. V. Rozovskii

Saint-Petersburg Chemical-Pharmaceutical Academy

Abstract: This paper presents the formula for the Cramér series coefficients, which arise in large deviation theorems. As a consequence, some estimates for these coefficients are obtained.

Keywords: the Cramér series, cumulants, large deviations.

DOI: https://doi.org/10.4213/tvp886

Full text: PDF file (285 kB)

English version:
Theory of Probability and its Applications, 1999, 43:1, 152–157

Bibliographic databases:

Received: 12.05.1997

Citation: L. V. Rozovskii, “On the Cramér series coefficients”, Teor. Veroyatnost. i Primenen., 43:1 (1998), 161–166; Theory Probab. Appl., 43:1 (1999), 152–157

Citation in format AMSBIB
\Bibitem{Roz98}
\by L.~V.~Rozovskii
\paper On the Cram\'er series coefficients
\jour Teor. Veroyatnost. i Primenen.
\yr 1998
\vol 43
\issue 1
\pages 161--166
\mathnet{http://mi.mathnet.ru/tvp886}
\crossref{https://doi.org/10.4213/tvp886}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=1670008}
\zmath{https://zbmath.org/?q=an:0957.60037}
\transl
\jour Theory Probab. Appl.
\yr 1999
\vol 43
\issue 1
\pages 152--157
\crossref{https://doi.org/10.1137/S0040585X97976763}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000079809600015}


Linking options:
  • http://mi.mathnet.ru/eng/tvp886
  • https://doi.org/10.4213/tvp886
  • http://mi.mathnet.ru/eng/tvp/v43/i1/p161

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. Rozovsky L.V., “The central limit theorem for the moments of sums of independent random variables”, Limit Theorems in Probability and Statistics, II (2002), 527–541  mathscinet  zmath  isi
    2. Olvera-Cravioto M., Glynn P.W., “Uniform approximations for the M/G/1 queue with subexponential processing times”, Queueing Syst, 68:1 (2011), 1–50  crossref  mathscinet  zmath  isi  elib  scopus
    3. L. V. Rozovsky, “On relation of the growth rate between moments and semyinvariants of a higher order”, J. Math. Sci. (N. Y.), 225:5 (2017), 802–804  mathnet  crossref  mathscinet
    4. L. V. Rozovskii, “Ob asimptoticheskikh razlozheniyakh v “intervalnoi” TsPT dlya summ nezavisimykh sluchainykh vektorov”, Veroyatnost i statistika. 26, Zap. nauchn. sem. POMI, 466, POMI, SPb., 2017, 273–288  mathnet
    5. M. A. Lifshits, Ya. Yu. Nikitin, V. V. Petrov, A. Yu. Zaitsev, A. A. Zinger, “Toward the history of the Saint Petersburg school of probability and statistics. I. Limit theorems for sums of independent random variables”, Vestn. St Petersb. Univ. Math., 51:2 (2018), 144–163  crossref  crossref  mathscinet  zmath  isi  elib  scopus
  • Теория вероятностей и ее применения Theory of Probability and its Applications
    Number of views:
    This page:154
    Full text:67
    First page:5

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2020