Teoriya Veroyatnostei i ee Primeneniya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Subscription
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Teor. Veroyatnost. i Primenen.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teor. Veroyatnost. i Primenen., 2005, Volume 50, Issue 3, Pages 517–532 (Mi tvp92)  

This article is cited in 2 scientific papers (total in 2 papers)

Uniform integrability condition in strong ration limit theorems

M. G. Shur

Moscow State Institute of Electronics and Mathematics

Abstract: For a given Markov chain with a measurable state space $(E,\mathscr{E})$, transition operator $P$, and fixed measurable function $f\geq 0$, under necessary conditions, we consider variables $\mu(f_n)$, where $n\ge 1$ is sufficiently large, $f_n=P^nf/\nu(P^nf)$, and $\mu$ and $\nu$ are probability measures on $\mathscr{E}$. For a wide class of situations we propose sufficient and often necessary and sufficient conditions for the convergence of $f_n$ to 1 as $n\to\infty$. These results differ from the results of Orey, Lin, Nummelin, and others by replacing the traditional recurrent conditions of a chain or the uniform boundedness of the functions $f_n$ and the minorizing condition of [E. Nummelin, General Irreducible Markov Chains and Nonnegative Operators, Cambridge University Press, Cambridge, UK, 1984] with more flexible assumptions, among which the uniform integrability of functions $f_n$ with respect to some collection of measures plays a particular role. Our theorems imply a weak and often a strong convergence of these functions to $\varphi\equiv 1$ in respective spaces of a summable function.

Keywords: Markov chain, strong limit theorem for ratios.

DOI: https://doi.org/10.4213/tvp92

Full text: PDF file (1726 kB)
References: PDF file   HTML file

English version:
Theory of Probability and its Applications, 2006, 50:3, 436–447

Bibliographic databases:

Received: 23.03.2004
Revised: 15.02.2005

Citation: M. G. Shur, “Uniform integrability condition in strong ration limit theorems”, Teor. Veroyatnost. i Primenen., 50:3 (2005), 517–532; Theory Probab. Appl., 50:3 (2006), 436–447

Citation in format AMSBIB
\Bibitem{Shu05}
\by M.~G.~Shur
\paper Uniform integrability condition in strong ration limit theorems
\jour Teor. Veroyatnost. i Primenen.
\yr 2005
\vol 50
\issue 3
\pages 517--532
\mathnet{http://mi.mathnet.ru/tvp92}
\crossref{https://doi.org/10.4213/tvp92}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=2223215}
\zmath{https://zbmath.org/?q=an:1120.60028}
\elib{https://elibrary.ru/item.asp?id=9156428}
\transl
\jour Theory Probab. Appl.
\yr 2006
\vol 50
\issue 3
\pages 436--447
\crossref{https://doi.org/10.1137/S0040585X97981858}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000241047600006}


Linking options:
  • http://mi.mathnet.ru/eng/tvp92
  • https://doi.org/10.4213/tvp92
  • http://mi.mathnet.ru/eng/tvp/v50/i3/p517

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles
    Cycle of papers

    This publication is cited in the following articles:
    1. M. G. Shur, “Majorizing Potentials in Strong Ratio Limit Theorems”, Math. Notes, 84:1 (2008), 116–124  mathnet  crossref  crossref  mathscinet  isi
    2. M. G. Shur, “Uniform integrability for strong ratio limit theorems. II”, Theory Probab. Appl., 55:3 (2011), 473–484  mathnet  crossref  crossref  mathscinet  isi
  • Теория вероятностей и ее применения Theory of Probability and its Applications
    Number of views:
    This page:364
    Full text:105
    References:54

     
    Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2022