RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TVT:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


TVT, 2018, Volume 56, Issue 2, Pages 193–202 (Mi tvt10734)  

This article is cited in 1 scientific paper (total in 1 paper)

Thermophysical Properties of Materials

Ideal and ultimate tensile strength of a solid body

V. G. Baidakov, A. O. Tipeev

Institute of Thermal Physics, Ural Branch, Russian Academy of Sciences, Ekaterinburg

Abstract: The mechanical stability of an ideal elastic solid under infinitesimal and finitesimal changes in its state parameters is considered. The temperature and density dependences of the isothermic moduli of bulk compression $K$, simple shear $\mu$, and tetragonal shear $\mu'$ in a Lennard-Jones face-centered cubic (FCC) crystal have been determined by means of molecular dynamic experiments in the region of stable and metastable states. It has been shown that the crystalline phase remains stable under long-wave spatially nonuniform density fluctuations on the spinodal $(K = 0)$ at pressures below the pressure of the endpoint of the melting line $(p < p_K < 0)$. Here, the critical nucleus formation work is also finitesimal. Hence, spinodal states in quasisteady-state processes at $p < 0$ not only are attainable, but the transition across the spinodal without destroying the homogeneity in the substance also proves to be feasible. In this case, the boundary of the ideal strength of a solid is set by the vanishing of the uniaxial compression modulus $\tilde K$ for a certain specified deformation direction. The spinodal also is not the boundary of the ideal strength of a solid at positive and small negative pressures. A solid loses its ability for a restorative response to finitesimal spatially nonuniform density disturbances before the spinodal $(\tilde K = 0)$ is attained.

Funding Agency Grant Number
Russian Science Foundation 14-19-00567
This work was supported by the Russian Scientific Foundation (project no. 14-19-00567).


DOI: https://doi.org/10.7868/S0040364418020059

Full text: PDF file (502 kB)
References: PDF file   HTML file

English version:
High Temperature, 2018, 56:2, 184–192

Bibliographic databases:

UDC: 536.421
Received: 14.07.2016
Accepted:27.12.2016

Citation: V. G. Baidakov, A. O. Tipeev, “Ideal and ultimate tensile strength of a solid body”, TVT, 56:2 (2018), 193–202; High Temperature, 56:2 (2018), 184–192

Citation in format AMSBIB
\Bibitem{BaiTip18}
\by V.~G.~Baidakov, A.~O.~Tipeev
\paper Ideal and ultimate tensile strength of a solid body
\jour TVT
\yr 2018
\vol 56
\issue 2
\pages 193--202
\mathnet{http://mi.mathnet.ru/tvt10734}
\crossref{https://doi.org/10.7868/S0040364418020059}
\elib{http://elibrary.ru/item.asp?id=34956804}
\transl
\jour High Temperature
\yr 2018
\vol 56
\issue 2
\pages 184--192
\crossref{https://doi.org/10.1134/S0018151X18020013}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000432524900005}
\elib{http://elibrary.ru/item.asp?id=35527886}
\scopus{http://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85047227761}


Linking options:
  • http://mi.mathnet.ru/eng/tvt10734
  • http://mi.mathnet.ru/eng/tvt/v56/i2/p193

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. Baidakov V.G., Tipeev A.O., “The Kinetics of the Liquid Phase Nucleation in a Stretched Fcc Crystal: a Molecular Dynamics Simulation”, Phys. Solid State, 60:9 (2018), 1853–1860  crossref  isi  scopus
  • Teplofizika vysokikh temperatur Teplofizika vysokikh temperatur
    Number of views:
    This page:101
    Full text:38
    References:10

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2019