|
Plasma Investigations
Spin states of electrons in quantum dots upon heating. Simulation by the Feynman path integral method. Magnetic properties
S. V. Shevkunov Peter the Great Saint-Petersburg Polytechnic University
Abstract:
Temperature dependences of spin states and spin paramagnetic susceptibility in ellipsoidal quantum dots (QDs) containing two or three electrons are numerically simulated using ab initio calculations based on the Feynman path integral method. Limits of the thermal stability of spin states are estimated. Upon cooling, the pairing of spins of an electron pair is most intense in spherical QDs; notably, prolate QDs hinder the pairing more strongly than the oblate ones. When the spherical shape of a QD is distorted, a characteristic peak in the temperature dependence of the electron-pair magnetic susceptibility shifts to lower temperatures. A spin of the system of three electrons may either increase or decrease upon cooling, depending on the QD shape. In the case of three electrons, strong spatial anisotropy of the electron-confining field causes a relative decrease in the energy of states with large spin values.
DOI:
https://doi.org/10.7868/S0040364417010215
Full text:
PDF file (486 kB)
References:
PDF file
HTML file
English version:
High Temperature, 2017, 55:1, 12–19
Bibliographic databases:
UDC:
536.491,53.096 Received: 16.12.2014
Citation:
S. V. Shevkunov, “Spin states of electrons in quantum dots upon heating. Simulation by the Feynman path integral method. Magnetic properties”, TVT, 55:1 (2017), 15–23; High Temperature, 55:1 (2017), 12–19
Citation in format AMSBIB
\Bibitem{She17}
\by S.~V.~Shevkunov
\paper Spin states of electrons in quantum dots upon heating. Simulation by the Feynman path integral method. Magnetic properties
\jour TVT
\yr 2017
\vol 55
\issue 1
\pages 15--23
\mathnet{http://mi.mathnet.ru/tvt10773}
\crossref{https://doi.org/10.7868/S0040364417010215}
\elib{https://elibrary.ru/item.asp?id=28880933}
\transl
\jour High Temperature
\yr 2017
\vol 55
\issue 1
\pages 12--19
\crossref{https://doi.org/10.1134/S0018151X17010217}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000396125000002}
\elib{https://elibrary.ru/item.asp?id=28827384}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85014461066}
Linking options:
http://mi.mathnet.ru/eng/tvt10773 http://mi.mathnet.ru/eng/tvt/v55/i1/p15
Citing articles on Google Scholar:
Russian citations,
English citations
Related articles on Google Scholar:
Russian articles,
English articles
|
Number of views: |
This page: | 167 | Full text: | 50 | References: | 34 | First page: | 1 |
|