RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TVT:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


TVT, 2019, Volume 57, Issue 2, Pages 226–233 (Mi tvt10999)  

Heat and Mass Transfer and Physical Gasdynamics

Minimax optimization method in the two-dimensional boundary-value inverse heat conduction problem

A. Diligenskaya

Samara State Technical University

Abstract: A method is proposed for the two-dimensional inverse heat conduction problem via reconstruction of the spatial and temporal density of a boundary heat flux. It is based on the optimal control theory for objects with distributed parameters. The method limits the set of desired solutions to the class of physically realized functions, which makes it possible to represent the desired-effect structure as a product of two onevariable functions. The problem of semi-infinite optimization, which minimizes temperature residuals in the uniform estimation metric, is formulated based on the parameterization of the desired characteristic (considered a control action). Analytical solution of the problem with the alternance properties of the desired optimal temperature deviations makes it possible to obtain the optimal values of the parameter vector.

Funding Agency Grant Number
Russian Foundation for Basic Research 18-08-00565
This study was supported by the Russian Foundation for Basic Research, project no. 18-08-00565.


DOI: https://doi.org/10.1134/S0018151X19020020

Full text: PDF file (683 kB)
References: PDF file   HTML file

English version:
High Temperature, 2019, 57:2, 203–210

Bibliographic databases:

UDC: 681.5.015, 517.977.56
Received: 31.01.2018
Accepted:10.10.2018

Citation: A. Diligenskaya, “Minimax optimization method in the two-dimensional boundary-value inverse heat conduction problem”, TVT, 57:2 (2019), 226–233; High Temperature, 57:2 (2019), 203–210

Citation in format AMSBIB
\Bibitem{Dil19}
\by A.~Diligenskaya
\paper Minimax optimization method in the two-dimensional boundary-value inverse heat conduction problem
\jour TVT
\yr 2019
\vol 57
\issue 2
\pages 226--233
\mathnet{http://mi.mathnet.ru/tvt10999}
\crossref{https://doi.org/10.1134/S0018151X19020020}
\elib{http://elibrary.ru/item.asp?id=41628092}
\transl
\jour High Temperature
\yr 2019
\vol 57
\issue 2
\pages 203--210
\crossref{https://doi.org/10.1134/S0040364419020029}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000480572900009}
\elib{http://elibrary.ru/item.asp?id=37297489}


Linking options:
  • http://mi.mathnet.ru/eng/tvt10999
  • http://mi.mathnet.ru/eng/tvt/v57/i2/p226

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles
  • Teplofizika vysokikh temperatur Teplofizika vysokikh temperatur
    Number of views:
    This page:120
    Full text:47

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2020