RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TVT:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


TVT, 2006, Volume 44, Issue 4, Pages 577–585 (Mi tvt1388)  

This article is cited in 3 scientific papers (total in 3 papers)

Heat and Mass Transfer and Physical Gasdynamics

Analysis of nonlinear heat conduction based on determining the front of temperature perturbation

V. A. Kudinov, B. V. Averin, E. V. Stefanyuk, S. A. Nazarenko

Samara State Technical University

Abstract: An analytical solution of nonlinear problem of heat conduction is derived using an integral method of heat balance. In order to improve the accuracy of solution, the temperature function is approximated by polynomials of higher degrees. The polynomial coefficients are determined using additional boundary conditions which are found from the basic differential equation and preassigned boundary conditions including the conditions on the front of temperature perturbation. It is demonstrated that the introduction of additional boundary conditions even in a second approximation results in a significant increase in the accuracy of solution of the problem.

Full text: PDF file (1325 kB)

English version:
High Temperature, 2006, 44:4, 574–583

UDC: 536.2(075)46
PACS: 44.10. + i
Received: 16.03.2005

Citation: V. A. Kudinov, B. V. Averin, E. V. Stefanyuk, S. A. Nazarenko, “Analysis of nonlinear heat conduction based on determining the front of temperature perturbation”, TVT, 44:4 (2006), 577–585; High Temperature, 44:4 (2006), 574–583

Citation in format AMSBIB
\Bibitem{KudAveSte06}
\by V.~A.~Kudinov, B.~V.~Averin, E.~V.~Stefanyuk, S.~A.~Nazarenko
\paper Analysis of nonlinear heat conduction based on determining the front of temperature perturbation
\jour TVT
\yr 2006
\vol 44
\issue 4
\pages 577--585
\mathnet{http://mi.mathnet.ru/tvt1388}
\elib{http://elibrary.ru/item.asp?id=9293914}
\transl
\jour High Temperature
\yr 2006
\vol 44
\issue 4
\pages 574--583
\crossref{https://doi.org/10.1007/s10740-006-0071-6}
\elib{http://elibrary.ru/item.asp?id=13508477}
\scopus{http://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-33748524222}


Linking options:
  • http://mi.mathnet.ru/eng/tvt1388
  • http://mi.mathnet.ru/eng/tvt/v44/i4/p577

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. V. F. Formalev, I. A. Selin, E. L. Kuznetsova, “Modelirovanie teplovykh voln v nelineinom anizotropnom prostranstve”, Vestn. Sam. gos. tekhn. un-ta. Ser. Fiz.-mat. nauki, 1(20) (2010), 239–243  mathnet  crossref
    2. E. L. Kuznetsova, “Modelirovanie teplovogo sostoyaniya kompozitsionnykh materialov na osnove universalnogo zakona razlozheniya svyazuyuschikh”, Vestn. Sam. gos. tekhn. un-ta. Ser. Fiz.-mat. nauki, 5(21) (2010), 170–178  mathnet  crossref
    3. Havrysh I V., Baranetskij Ya.O., Kolyasa I L., “Investigation of Temperature Modes in Thermosensitive Non-Uniform Elements of Radioelectronic Devices”, Radio Electron. Comput. Sci. Control, 2018, no. 3, 7–15  crossref  isi
  • Teplofizika vysokikh temperatur Teplofizika vysokikh temperatur
    Number of views:
    This page:97
    Full text:55

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2019