RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TVT:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


TVT, 2011, Volume 49, Issue 1, Pages 108–115 (Mi tvt256)  

This article is cited in 2 scientific papers (total in 2 papers)

Heat and Mass Transfer and Physical Gasdynamics

On the Integral Characteristics of Single Scattering on Nonspherical Particles

I. A. Vasil'eva

Joint Institute for High Temperatures, Russian Academy of Sciences, Moscow

Abstract: Expressions are obtained for the integral characteristics of single scattering of polarized radiation on particles of arbitrary shape. Polarized radiation is described by Stokes parameters. The two known scattering characteristics are examined—the full scattering cross section and the scattering matrix normalization constant. A dimensionless scattering integral is analyzed that takes into account possible scattering of incident radiation in all directions and determines the two considered integral characteristics. The integral is expressed via the scattering matrix elements and Stokes parameters of incident radiation. In the case of a nonspherical particle, the matrix elements depend on the direction of radiation incident on the particle. In this connection, the total scattering is affected by the structure of the incident beam. The practically important cases of particle illumination by parallel and convergent beams are considered. Expressions are obtained for the integral characteristics, averaged over the directions of incident radiation. Simple relations between the two scattering characteristics under different particle illumination are derived.

Full text: PDF file (804 kB)
References: PDF file   HTML file

English version:
High Temperature, 2011, 49:1, 108–115

Bibliographic databases:

UDC: 536.3
Received: 05.11.2009

Citation: I. A. Vasil'eva, “On the Integral Characteristics of Single Scattering on Nonspherical Particles”, TVT, 49:1 (2011), 108–115; High Temperature, 49:1 (2011), 108–115

Citation in format AMSBIB
\Bibitem{Vas11}
\by I.~A.~Vasil'eva
\paper On the Integral Characteristics of Single Scattering on Nonspherical Particles
\jour TVT
\yr 2011
\vol 49
\issue 1
\pages 108--115
\mathnet{http://mi.mathnet.ru/tvt256}
\elib{http://elibrary.ru/item.asp?id=15599064}
\transl
\jour High Temperature
\yr 2011
\vol 49
\issue 1
\pages 108--115
\crossref{https://doi.org/10.1134/S0018151X11010275}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000289638600013}
\elib{http://elibrary.ru/item.asp?id=16836632}
\scopus{http://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-79952856797}


Linking options:
  • http://mi.mathnet.ru/eng/tvt256
  • http://mi.mathnet.ru/eng/tvt/v49/i1/p108

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. A. Yu. Varaksin, “Fluid dynamics and thermal physics of two-phase flows: Problems and achievements”, High Temperature, 51:3 (2013), 377–407  mathnet  crossref  isi  elib  elib
    2. V. B. Alekseev, V. I. Zalkind, Yu. A. Zeigarnik, D. V. Marinichev, V. L. Nizovskiy, L. V. Nizovskiy, “Atomization of Superheated Water: Practice of Investigation of Complicated Disperse Systems”, High Temperature, 52:3 (2014), 443–448  mathnet  crossref  crossref  isi  elib  elib
  • Teplofizika vysokikh temperatur Teplofizika vysokikh temperatur
    Number of views:
    This page:102
    Full text:21
    References:28

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2019