General information
Latest issue
Forthcoming papers
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

Latest issue
Current issues
Archive issues
What is RSS


Personal entry:
Save password
Forgotten password?

TVT, 2015, Volume 53, Issue 2, Pages 256–263 (Mi tvt268)  

This article is cited in 10 scientific papers (total in 10 papers)

Heat and Mass Transfer and Physical Gasdynamics

Measurement of the heat transfer coefficient of a nanofluid based on water and copper oxide particles in a cylindrical channel

A. V. Minakovab, V. Ya. Rudyakc, D. V. Guzeyb, A. S. Lobasovb

a S.S. Kutateladze Institute of Heat Physics, Siberian Division of the Russian Academy of Sciences
b Siberian Federal University, Krasnoyarsk
c Novosibirsk State University of Architecture and Civil Engineering

Abstract: The heat transfer coefficient of a nanofluid in a cylindrical channel under constant heat flux density at the walls is measured experimentally. The studied fluid was prepared based on distilled water and $\mathrm{CuO}$ nanoparticles with an average size of $55$ nm. To stabilize the nanofluid, a biopolymer was used. The volume concentration of nanoparticles was in the range from $0.25$ to $2%$. It is shown that the nanofluid is Newtonian at the lowest concentration of nanoparticles, and in all other cases, its rheology is described well by the model of a power-law fluid. A correlation of the dependence of the parameters of this model on the concentration of nanoparticles is obtained. It is found that the presence of nanoparticles greatly intensifies the heat transfer.


Full text: PDF file (669 kB)
References: PDF file   HTML file

English version:
High Temperature, 2015, 53:2, 246–253

Bibliographic databases:

UDC: 536.24+532.133+532.135
Received: 13.11.2013

Citation: A. V. Minakov, V. Ya. Rudyak, D. V. Guzey, A. S. Lobasov, “Measurement of the heat transfer coefficient of a nanofluid based on water and copper oxide particles in a cylindrical channel”, TVT, 53:2 (2015), 256–263; High Temperature, 53:2 (2015), 246–253

Citation in format AMSBIB
\by A.~V.~Minakov, V.~Ya.~Rudyak, D.~V.~Guzey, A.~S.~Lobasov
\paper Measurement of the heat transfer coefficient of a nanofluid based on water and copper oxide particles in a cylindrical channel
\jour TVT
\yr 2015
\vol 53
\issue 2
\pages 256--263
\jour High Temperature
\yr 2015
\vol 53
\issue 2
\pages 246--253

Linking options:

    SHARE: FaceBook Twitter Livejournal

    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. V. Ya. Rudyak, “Molecular dynamics simulation of pressure isotherms for nanofluids”, Colloid J., 78:2 (2016), 204–209  crossref  isi
    2. V. E. Zhukov, A. N. Pavlenko, M. I. Moiseev, D. V. Kuznetsov, “Dynamics of interphase surface of self-sustaining evaporation front in liquid with additives of nanosized particles”, High Temperature, 55:1 (2017), 79–86  mathnet  crossref  crossref  isi  elib
    3. T. Musial, M. Piasecka, S. Hozejowska, “A study of the flow boiling heat transfer in an annular heat exchanger with a mini gap”, Experimental Fluid Mechanics 2016 (EFM16), EPJ Web Conf., 143, ed. P. Dancova, EDP Sciences, 2017, UNSP 02077  crossref  isi  scopus
    4. M. Piasecka, S. Hozejowska, T. Musial, “Modelling of flow boiling heat transfer in a cylindrical annulus mini gap”, 4th Scientific and Technical Conference on Modern Technologies and Energy Systems (WTiUE 2016), E3S Web Conf., 13, eds. J. Taler, B. Weglowski, T. Sobota, EDP Sciences, 2017, UNSP 02002  crossref  isi  scopus
    5. V A. Minakov, V. Ya. Rudyak, I M. Pryazhnikov, “Rheological behavior of water and ethylene glycol based nanofluids containing oxide nanoparticles”, Colloid Surf. A-Physicochem. Eng. Asp., 554 (2018), 279–285  crossref  isi  scopus
    6. M. H. Ahmadi, M. A. Nazari, R. Ghasempour, H. Madah, M. B. Shafii, M. A. Ahmadi, “Thermal conductivity ratio prediction of al2o3/water nanofluid by applying connectionist methods”, Colloid Surf. A-Physicochem. Eng. Asp., 541 (2018), 154–164  crossref  isi  scopus
    7. V. Ya. Rudyak, A. V. Minakov, “Thermophysical properties of nanofluids”, Eur. Phys. J. E, 41:1 (2018), 15  crossref  isi  scopus
    8. A. S. Lobasov, A. V. Minakov, M. I. Pryazhnikov, “Nanodiamond suspensions application for heat transfer processes intensification”, 2018 International Scientific Multi-Conference on Industrial Engineering and Modern Technologies (FarEastCon), IEEE, 2018  crossref  isi
    9. V. Rudyak, A. Minakov, “The features of the modeling the nanofluid flows”, Eighth Polyakhov's Reading, AIP Conf. Proc., 1959, eds. E. Kustova, G. Leonov, N. Morosov, M. Yushkov, M. Mekhonoshina, Amer. Inst. Phys., 2018, UNSP 060013  crossref  isi  scopus
    10. D. Yu. Lenev, H. E. Norman, “Molecular modeling of the thermal accommodation of argon atoms in clusters of iron atoms”, High Temperature, 57:4 (2019), 490–497  mathnet  crossref  crossref  isi  elib
  • Teplofizika vysokikh temperatur Teplofizika vysokikh temperatur
    Number of views:
    This page:303
    Full text:74
    First page:2

    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2020