General information
Latest issue
Forthcoming papers
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

Latest issue
Current issues
Archive issues
What is RSS


Personal entry:
Save password
Forgotten password?

TVT, 2015, Volume 53, Issue 1, Pages 72–77 (Mi tvt3914)  

This article is cited in 12 scientific papers (total in 12 papers)

Heat and Mass Transfer and Physical Gasdynamics

The inverse boundary thermal conductivity problem of recovery of heat fluxes to the boundries of anisotropic bodies

S. A. Kolesnik, V. F. Formalev, E. L. Kuznetsova

Moscow Aviation Institute (State University of Aerospace Technologies)

Abstract: A method for solution of the inverse boundary thermal conductivity problem of recovery of the heat fluxes to the structural components of aircraft fabricated of anisotropic materials is proposed. The method is based on a previously obtained analytical solution of a $2D$ nonstationary thermal conductivity problem in an anisotropic fin under boundary heat transfer. The method consists in parametric identification and finite-element approximation of the dependence of the heat flux on the spatial variable. A regularizing algorithm is developed that permits identification of heat fluxes with large, up to $10%$, errors in the experimental temperature values. The results obtained in numerical experiments are analyzed.


Full text: PDF file (279 kB)
References: PDF file   HTML file

English version:
High Temperature, 2015, 53:1, 68–72

Bibliographic databases:

UDC: 536.21
Received: 18.12.2013

Citation: S. A. Kolesnik, V. F. Formalev, E. L. Kuznetsova, “The inverse boundary thermal conductivity problem of recovery of heat fluxes to the boundries of anisotropic bodies”, TVT, 53:1 (2015), 72–77; High Temperature, 53:1 (2015), 68–72

Citation in format AMSBIB
\by S.~A.~Kolesnik, V.~F.~Formalev, E.~L.~Kuznetsova
\paper The inverse boundary thermal conductivity problem of recovery of heat fluxes to the boundries of anisotropic bodies
\jour TVT
\yr 2015
\vol 53
\issue 1
\pages 72--77
\jour High Temperature
\yr 2015
\vol 53
\issue 1
\pages 68--72

Linking options:

    SHARE: FaceBook Twitter Livejournal

    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. V. F. Formalev, S. A. Kolesnik, E. L. Kuznetsova, “Nonstationary heat transfer in anisotropic half-space under the conditions of heat exchange with the environment having a specified temperature”, High Temperature, 54:6 (2016), 824–830  mathnet  crossref  crossref  isi  elib
    2. V. F. Formalev, S. A. Kolesnik, “On inverse boundary heat-conduction problems for recovery of heat fluxes to anisotropic bodies with nonlinear heat-transfer characteristics”, High Temperature, 55:4 (2017), 549–554  mathnet  crossref  crossref  isi  elib
    3. V. F. Formalev, S. A. Kolesnik, E. L. Kuznetsova, “Time-dependent heat transfer in a plate with anisotropy of general form under the action of pulsed heat sources”, High Temperature, 55:5 (2017), 761–766  mathnet  crossref  crossref  isi  elib
    4. A. V. Kostanovskii, M. E. Kostanovskaya, “The role of heat flux in the nonsteady thermal problem of molybdenum sphere cooling in an electrostatic levitation experiment”, High Temperature, 55:6 (2017), 866–869  mathnet  crossref  crossref  isi  elib
    5. V. F. Formalev, S. A. Kolesnik, “On inverse coefficient heat-conduction problems on reconstruction of nonlinear components of the thermal-conductivity tensor of anisotropic bodies”, J. Eng. Phys. Thermophys., 90:6 (2017), 1302–1309  crossref  isi  scopus
    6. E. Ya. Rapoport, A. N. Diligenskaya, “Modalnaya identifikatsiya granichnogo vozdeistviya v dvumernoi obratnoi zadache teploprovodnosti”, Vestn. Sam. gos. tekhn. un-ta. Ser. Fiz.-mat. nauki, 22:2 (2018), 380–394  mathnet  crossref  zmath  elib
    7. V. F. Formalev, S. A. Kolesnik, “Temperature-dependent anisotropic bodies thermal conductivity tensor components identification method”, Int. J. Heat Mass Transf., 123 (2018), 994–998  crossref  isi  scopus
    8. V. V. Korenevsky, E. A. Mordik, M. M. Tamov, “Reduction of the actual modulus of elasticity to the design temperature”, Period. Tche Quim., 15:1 (2018), 98–102  isi
    9. V. A. Ripetskiy, I. T. Mirolyubova, S. A. Freylekhman, “Analysis of factors that determine the possibility for automation of smoothing of product electronic model, obtained through topological optimization for the purpose of its use in the technological preparation of additive manufacturing”, Period. Tche Quim., 15:1 (2018), 405–413  isi
    10. V. S. Zarubin, G. N. Kuvyrkin, I. Y. Savelyeva, “Two-sided thermal resistance estimates for heat transfer through an anisotropic solid of complex shape”, Int. J. Heat Mass Transf., 116 (2018), 833–839  crossref  isi  scopus
    11. A. G. Vikulov, A. V. Nenarokomov, “Refined solution of the variational problem of identification of lumped parameter mathematical models of heat transfer”, High Temperature, 57:2 (2019), 211–221  mathnet  crossref  crossref  isi  elib
    12. A. Diligenskaya, “Minimax optimization method in the two-dimensional boundary-value inverse heat conduction problem”, High Temperature, 57:2 (2019), 203–210  mathnet  crossref  crossref  isi  elib  elib
  • Teplofizika vysokikh temperatur Teplofizika vysokikh temperatur
    Number of views:
    This page:199
    Full text:46
    First page:2

    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2020