RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TVT:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


TVT, 2015, Volume 53, Issue 1, Pages 66–71 (Mi tvt5168)  

This article is cited in 5 scientific papers (total in 5 papers)

Thermophysical Properties of Materials

Classical ideal curves in the phase diagram for simple substances

V. I. Nedostup

A. V. Bogatsky Physico-Chemical Institute of the National Academy of Sciences of Ukraine, Odessa

Abstract: In this paper, the curves of an ideal gas, ideal enthalpy, and ideal internal energy, united by a common definition of classical ideal curves (CICs), are considered. It is shown that the configurational parts of the thermodynamic properties, such as enthalpy $H$, internal energy $U$, $PV$, and temperature $T$, change linearly in these curves. The explanation of the behavior of CICs is proposed by representing the properties as the sum of internal and thermal components. A model of interrelated termination temperatures and densities of these ideal curves is developed. An expression for the "potentiale of mean force" is obtained, reflecting the linearity of the thermodynamic properties in the classical ideal curves.

DOI: https://doi.org/10.7868/S004036441406009X

Full text: PDF file (357 kB)
References: PDF file   HTML file

English version:
High Temperature, 2015, 53:1, 62–67

Bibliographic databases:

UDC: 543.27
Received: 26.08.2013

Citation: V. I. Nedostup, “Classical ideal curves in the phase diagram for simple substances”, TVT, 53:1 (2015), 66–71; High Temperature, 53:1 (2015), 62–67

Citation in format AMSBIB
\Bibitem{Ned15}
\by V.~I.~Nedostup
\paper Classical ideal curves in the phase diagram for simple substances
\jour TVT
\yr 2015
\vol 53
\issue 1
\pages 66--71
\mathnet{http://mi.mathnet.ru/tvt5168}
\crossref{https://doi.org/10.7868/S004036441406009X}
\elib{http://elibrary.ru/item.asp?id=22841001}
\transl
\jour High Temperature
\yr 2015
\vol 53
\issue 1
\pages 62--67
\crossref{https://doi.org/10.1134/S0018151X14060091}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000350357800010}
\elib{http://elibrary.ru/item.asp?id=24505504}
\scopus{http://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84923770887}


Linking options:
  • http://mi.mathnet.ru/eng/tvt5168
  • http://mi.mathnet.ru/eng/tvt/v53/i1/p66

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. A. L. Goncharov, V. V. Melent'ev, E. B. Postnikov, “The speed of sound and the heat capacity of liquid neon in the subcritical region”, High Temperature, 54:1 (2016), 51–54  mathnet  crossref  crossref  isi  elib
    2. E. B. Postnikov, M. Chorazewski, “Transition in fluctuation behaviour of normal liquids under high pressures”, Physica A, 449 (2016), 275–280  crossref  isi
    3. E. M. Apfelbaum, V. S. Vorob'ev, “The application of the Zeno line similarities to alkaline earth metals”, J. Mol. Liq., 235:SI (2017), 149–154  crossref  isi  scopus
    4. Jr. Rogankov, V. Oleg, V. B. Rogankov, “Can the Boyle's and critical parameters be unambiguously correlated for polar and associating fluids, liquid metals, ionic liquids?”, Fluid Phase Equilib., 434 (2017), 200–210  crossref  isi  scopus
    5. O. V. Rogankov Jr., V. A. Mazur, M. V. Shvets, V. B. Rogankov, “Re-established congruent vapor-liquid diagram of alkali fluid metals as alternative to crossover VLE-interpretation”, Fluid Phase Equilib., 466 (2018), 79–88  crossref  isi  scopus
  • Teplofizika vysokikh temperatur Teplofizika vysokikh temperatur
    Number of views:
    This page:211
    Full text:47
    References:41
    First page:2

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2020