RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TVT:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


TVT, 2013, Volume 51, Issue 1, Pages 73–78 (Mi tvt58)  

This article is cited in 3 scientific papers (total in 3 papers)

Thermophysical Properties of Materials

An approximate numerical method of solving collision integrals for the Morse potential in a wide parameter interval

V. N. Popov

Joint Institute for High Temperatures, Russian Academy of Sciences, Moscow, Russia

Abstract: The calculation technique for the collision integrals with model potentials has been refined. The collision integrals were calculated for the Morse potential in wide ranges of the reduced temperature and the parameter $\beta$. The applicability limits of the calculation of the collision integrals for the Morse potential at small $\beta$ values have been found. The calculated values of the collision integrals have been fitted with analytical functions. The obtained results were compared critically with the published data. The temperature derivatives of the collision integrals have been analyzed.

Full text: PDF file (198 kB)
References: PDF file   HTML file

English version:
High Temperature, 2013, 51:1, 66–71

Bibliographic databases:

UDC: 546.212 + 533.16
Received: 03.04.2012

Citation: V. N. Popov, “An approximate numerical method of solving collision integrals for the Morse potential in a wide parameter interval”, TVT, 51:1 (2013), 73–78; High Temperature, 51:1 (2013), 66–71

Citation in format AMSBIB
\Bibitem{Pop13}
\by V.~N.~Popov
\paper An approximate numerical method of solving collision integrals for the Morse potential in a wide parameter interval
\jour TVT
\yr 2013
\vol 51
\issue 1
\pages 73--78
\mathnet{http://mi.mathnet.ru/tvt58}
\elib{https://elibrary.ru/item.asp?id=18446098}
\transl
\jour High Temperature
\yr 2013
\vol 51
\issue 1
\pages 66--71
\crossref{https://doi.org/10.1134/S0018151X13010124}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000315044900010}
\elib{https://elibrary.ru/item.asp?id=20434524}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84874046414}


Linking options:
  • http://mi.mathnet.ru/eng/tvt58
  • http://mi.mathnet.ru/eng/tvt/v51/i1/p73

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. Meshkov V.V., Popov V.N., Fokin L.R., “Diffusion in Mercury-Argon Gas Mixtures”, Russ. J. Phys. Chem. A, 88:4 (2014), 578–583  crossref  isi  elib
    2. A. E. Galashev, “Computer simulation of the thermal stability of nickel films on two-layer graphene”, High Temperature, 52:5 (2014), 633–639  mathnet  crossref  crossref  isi  elib  elib
    3. D. L. Tsyganov, “Calculations of total classical cross sections for a central field”, Few-Body Syst., 59:4 (2018), UNSP 74  crossref  isi  scopus
  • Teplofizika vysokikh temperatur Teplofizika vysokikh temperatur
    Number of views:
    This page:154
    Full text:37
    References:34

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2020