RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TVT:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


TVT, 2015, Volume 53, Issue 4, Pages 551–555 (Mi tvt6698)  

This article is cited in 3 scientific papers (total in 3 papers)

Heat and Mass Transfer and Physical Gasdynamics

Problems of dynamic thermoelasticity on the basis of an analytical solution of the hyperbolic heat conduction equation

I. V. Kudinov, V. A. Kudinov

Samara State Technical University

Abstract: Using the hyperbolic heat conduction equation found from the condition of heat flow relaxation and the temperature gradient in the formula of the Fourier law, an exact analytical solution of the boundary problem of dynamic thermoelasticity for an infinite plate with symmetric boundary conditions of the first kind is obtained. It is shown that stresses change discontinuously in time with a periodic change in their sign at every point of the space. Under a sustained character, the process of changes in stresses occurs in the form of a string fixed at both ends and having kinks (stress jumps) moving along the spatial variable in time.

DOI: https://doi.org/10.7868/S0040364415030102

Full text: PDF file (355 kB)
References: PDF file   HTML file

English version:
High Temperature, 2015, 53:4, 521–525

Bibliographic databases:

UDC: 536.2 (075)
Received: 02.04.2014
Accepted:23.12.2014

Citation: I. V. Kudinov, V. A. Kudinov, “Problems of dynamic thermoelasticity on the basis of an analytical solution of the hyperbolic heat conduction equation”, TVT, 53:4 (2015), 551–555; High Temperature, 53:4 (2015), 521–525

Citation in format AMSBIB
\Bibitem{KudKud15}
\by I.~V.~Kudinov, V.~A.~Kudinov
\paper Problems of dynamic thermoelasticity on the basis of an analytical solution of the hyperbolic heat conduction equation
\jour TVT
\yr 2015
\vol 53
\issue 4
\pages 551--555
\mathnet{http://mi.mathnet.ru/tvt6698}
\crossref{https://doi.org/10.7868/S0040364415030102}
\elib{http://elibrary.ru/item.asp?id=23908330}
\transl
\jour High Temperature
\yr 2015
\vol 53
\issue 4
\pages 521--525
\crossref{https://doi.org/10.1134/S0018151X15030116}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000360082400011}
\elib{http://elibrary.ru/item.asp?id=24942457}
\scopus{http://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84940199366}


Linking options:
  • http://mi.mathnet.ru/eng/tvt6698
  • http://mi.mathnet.ru/eng/tvt/v53/i4/p551

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. V. F. Formalev, S. A. Kolesnik, “On inverse boundary heat-conduction problems for recovery of heat fluxes to anisotropic bodies with nonlinear heat-transfer characteristics”, High Temperature, 55:4 (2017), 549–554  mathnet  crossref  crossref  isi  elib
    2. V. A. Kudinov, A. V. Eremin, I. V. Kudinov, A. I. Dovgallo, “Rod resonant oscillations considering material relaxation properties”, Proceedings of the 3rd International Conference on Dynamics and Vibroacoustics of Machines (DVM2016), Procedia Engineering, 176, eds. V. Sverbilov, A. Plummer, Elsevier Science BV, 2017, 226–236  crossref  isi  scopus
    3. V. A. Kudinov, S. O. Nekrasova, A. V. Eremin, I. V. Kudinov, “Gas resonant oscillations considering gas relaxation properties”, Proceedings of the 3rd International Conference on Dynamics and Vibroacoustics of Machines (DVM2016), Procedia Engineering, 176, eds. V. Sverbilov, A. Plummer, Elsevier Science BV, 2017, 237–245  crossref  isi  scopus
  • Teplofizika vysokikh temperatur Teplofizika vysokikh temperatur
    Number of views:
    This page:140
    Full text:35
    References:38
    First page:4

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2020