RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TVT:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


TVT, 2010, Volume 48, Issue 2, Pages 262–268 (Mi tvt718)  

This article is cited in 25 scientific papers (total in 25 papers)

Heat and Mass Transfer and Physical Gasdynamics

The procedure for investigation of the efficiency of purification of natural gases in a supersonic separator

M. M. Malyshkina

Moscow Institute of Physics and Technology

Abstract: A procedure is suggested for determining the field of application of supersonic separators. The formulation of the problem is given as regards the choice of optimal values of Mach number. The compositions of gas-liquid mixtures are determined as a function of the initial parameters (composition of gas, temperature, pressure, and Mach number). The results are given in the form of temperature, pressure, and Mach number dependences of the composition of the liquid phase of gas-liquid mixture. Primary estimation is made of the efficiency of purification of natural gases depending on their initial parameters.

Full text: PDF file (583 kB)

English version:
High Temperature, 2010, 48:2, 244–250

Bibliographic databases:

UDC: 533.17
PACS: 47.27nf; 47.32Ef
Received: 01.08.2008

Citation: M. M. Malyshkina, “The procedure for investigation of the efficiency of purification of natural gases in a supersonic separator”, TVT, 48:2 (2010), 262–268; High Temperature, 48:2 (2010), 244–250

Citation in format AMSBIB
\Bibitem{Mal10}
\by M.~M.~Malyshkina
\paper The procedure for investigation of the efficiency of purification of natural gases in a supersonic separator
\jour TVT
\yr 2010
\vol 48
\issue 2
\pages 262--268
\mathnet{http://mi.mathnet.ru/tvt718}
\elib{http://elibrary.ru/item.asp?id=13725625}
\transl
\jour High Temperature
\yr 2010
\vol 48
\issue 2
\pages 244--250
\crossref{https://doi.org/10.1134/S0018151X10020161}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000277241300016}
\elib{http://elibrary.ru/item.asp?id=15313743}
\scopus{http://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-77952313878}


Linking options:
  • http://mi.mathnet.ru/eng/tvt718
  • http://mi.mathnet.ru/eng/tvt/v48/i2/p262

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. Wen Ch., Cao X., Yang Ya., Zhang J., “Swirling Effects on the Performance of Supersonic Separators for Natural Gas Separation”, Chem. Eng. Technol., 34:9 (2011), 1575–1580  crossref  isi  elib
    2. Cao X., Wen Ch., Yang Ya., “Numerical Simulation of Flow Field in Gas/Liquid Separators with Supersonic Wings”, 2011 International Conference on Energy and Environmental Science-Icees 2011, Energy Procedia, 11, ed. Zhou X., Elsevier Science BV, 2011  crossref  isi
    3. Wen Ch., Cao X., Yang Ya., Li W., “Numerical Simulation of Natural Gas Flows in Diffusers for Supersonic Separators”, Energy, 37:1 (2012), 195–200  crossref  isi  elib
    4. Shooshtari S.H.R., Shahsavand A., “Reliable Prediction of Condensation Rates for Purification of Natural Gas via Supersonic Separators”, Sep. Purif. Technol., 116 (2013), 458–470  crossref  isi
    5. Vaziri B.M., Shahsavand A., “Analysis of Supersonic Separators Geometry Using Generalized Radial Basis Function (Grbf) Artificial Neural Networks”, J. Nat. Gas Sci. Eng., 13 (2013), 30–41  crossref  isi
    6. Liu X., Liu Zh., Li Ya., “Investigation on Separation Efficiency in Supersonic Separator With Gas-Droplet Flow Based on Dpm Approach”, Sep. Sci. Technol., 49:17 (2014), 2603–2612  crossref  isi  elib
    7. Yang Ya., Wen Ch., Wang Sh., Feng Yu., “Numerical Simulation of Real Gas Flows in Natural Gas Supersonic Separation Processing”, J. Nat. Gas Sci. Eng., 21 (2014), 829–836  crossref  isi  elib
    8. Yang Ya., Wen Ch., Wang Sh., Feng Yu., “Theoretical and Numerical Analysis on Pressure Recovery of Supersonic Separators For Natural Gas Dehydration”, Appl. Energy, 132 (2014), 248–253  crossref  isi  elib
    9. Yang Ya., Wen Ch., Wang Sh., Feng Yu., “Effect of Inlet and Outlet Flow Conditions on Natural Gas Parameters in Supersonic Separation Process”, PLoS One, 9:10 (2014), e110313  crossref  isi
    10. Shooshtari Seyed Heydar Rajaee, Shahsavand A., “Predictions of Wet Natural Gases Condensation Rates Via Multi-Component and Multi-Phase Simulation of Supersonic Separators”, Korean J. Chem. Eng., 31:10 (2014), 1845–1858  crossref  isi  elib
    11. Castier M., “Modeling and Simulation of Supersonic Gas Separations”, J. Nat. Gas Sci. Eng., 18 (2014), 304–311  crossref  isi  elib
    12. Yang Ya., Wen Ch., Wang Sh., Feng Yu., Witt P., “the Swirling Flow Structure in Supersonic Separators For Natural Gas Dehydration”, RSC Adv., 4:95 (2014), 52967–52972  crossref  isi  elib
    13. Li K., Eriqitai, Yan Ch., Ji W., Su P., “Research on the Optimization Design of Supersonic Swirling Separator”, Advances in Computational Modeling and Simulation, Pts 1 and 2, Applied Mechanics and Materials, 444-445, eds. Ran G., Yun Z., Jianming Z., Yang Y., Ze L., Tao G., Trans Tech Publications Ltd, 2014, 332–337  crossref  isi
    14. Haghighi M., Hawboldt K.A., Abdi M.A., “Supersonic Gas Separators: Review of Latest Developments”, J. Nat. Gas Sci. Eng., 27:1 (2015), 109–121  crossref  isi
    15. Cao X., Yang W., “the Dehydration Performance Evaluation of a New Supersonic Swirling Separator”, J. Nat. Gas Sci. Eng., 27:3 (2015), 1667–1676  crossref  isi
    16. Wen Ch., Cao X., Yang Ya., Feng Yu., “Prediction of Mass Flow Rate in Supersonic Natural Gas Processing”, Oil Gas Sci. Technol., 70:6 (2015), 1101–1109  crossref  isi
    17. Cao X., Yang W., “Numerical Simulation of Binary-Gas Condensation Characteristics in Supersonic Nozzles”, J. Nat. Gas Sci. Eng., 25 (2015), 197–206  crossref  isi  elib
    18. Yang Ya. Wen Ch., “Cfd Modeling of Particle Behavior in Supersonic Flows With Strong Swirls For Gas Separation”, Sep. Purif. Technol., 174 (2017), 22–28  crossref  isi  scopus
    19. Yang Ya. Li A. Wen Ch., “Optimization of Static Vanes in a Supersonic Separator For Gas Purification”, Fuel Process. Technol., 156 (2017), 265–270  crossref  isi  scopus
    20. Bian J. Cao X. Yang W. Du H. Yin P., “Effects of External Particles on the Liquefaction Property of Natural Gas in a Laval Nozzle”, Powder Technol., 339 (2018), 894–902  crossref  isi  scopus
    21. Bian J. Cao X. Yang W. Edem M.A. Yin P. Jiang W., “Supersonic Liquefaction Properties of Natural Gas in the Laval Nozzle”, Energy, 159 (2018), 706–715  crossref  isi  scopus
    22. Shooshtari S.H.R. Shahsavand A., “Optimal Operation of Refrigeration Oriented Supersonic Separators For Natural Gas Dehydration Via Heterogeneous Condensation”, Appl. Therm. Eng., 139 (2018), 76–86  crossref  isi  scopus
    23. Jiang W. Bian J. Wu A. Gao S. Yin P. Hou D., “Investigation of Supersonic Separation Mechanism of Co2 in Natural Gas Applying the Discrete Particle Method”, Chem. Eng. Process., 123 (2018), 272–279  crossref  isi  scopus
    24. Zheng H. Ma Yu. Mei H. Xu X. Chen X. Cao X., “Supersonic Condensation Characteristics of Co2 in Natural Gas Under Different Temperature Conditions”, Front. Heat Mass Transf., 11 (2018), 34  crossref  isi
    25. Liu X. Liu Zh., “Numerical Investigation and Improvement Strategy of Flow Characteristics Inside Supersonic Separator”, Sep. Sci. Technol., 53:6 (2018), 940–952  crossref  isi  scopus
  • Teplofizika vysokikh temperatur Teplofizika vysokikh temperatur
    Number of views:
    This page:128
    Full text:38

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2019