General information
Latest issue
Forthcoming papers
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

Latest issue
Current issues
Archive issues
What is RSS


Personal entry:
Save password
Forgotten password?

TVT, 2009, Volume 47, Issue 4, Pages 522–535 (Mi tvt837)  

This article is cited in 15 scientific papers (total in 15 papers)

Thermophysical Properties of Materials

Application of the embedded atom model to liquid metals: Liquid sodium

D. K. Belashchenko

State Technological University (Moscow State Institute of Steel and Alloys)

Abstract: The procedure for the calculation of the embedded atom model (EAM) potential for liquid metal, which involves the use of diffraction data on the structure of material in the vicinity of the melting point, is applied to sodium. In fitting the parameters of EAM potential, use is made of the data on the structure of sodium at $378$, $473$, and $723$ K, as well as on the thermodynamic properties of sodium at pressures up to $96$ GPa. The use of the method of molecular dynamics (MD) and of the EAM potential produces good agreement with experiment as regards the structure, density, and potential energy of liquid metal along the $p \cong 0$ isobar at temperatures up to $2300$ K, as well as along the shock adiabat up to pressures of $\sim100$ GPa and temperature of $\sim30 000$ K. The melting temperature of bcc model of sodium with EAM potential is equal to $358 \pm 1$ K and close to real. The predicted value of bulk modulus at $378$ K is close to the actual value. The self-diffusion coefficients under isobaric heating increase with temperature by the power law with exponent of $1.6546$. The values of pressure, energy, heat capacity, and the temperature coefficient of pressure are calculated in a wide range of densities. The compression to $45$$50%$ of normal volume causes a variation of the structure of liquid; this results in the emergence of atoms with a small radius of the first coordination sphere $(\sim2.1$ Å$)$ and low coordination number, which form connected groups (clusters). Their concentration increases with decreasing volume and increasing temperature. The pre-peak of pair correlation functions, the height of which increases with heating, corresponds to these atoms. In the region of variation of the structure, the pressure decrease under isochoric heating follows the pattern of water anomaly.

Full text: PDF file (1023 kB)

English version:
High Temperature, 2009, 47:4, 494–507

Bibliographic databases:

UDC: 536.4
Received: 06.05.2008

Citation: D. K. Belashchenko, “Application of the embedded atom model to liquid metals: Liquid sodium”, TVT, 47:4 (2009), 522–535; High Temperature, 47:4 (2009), 494–507

Citation in format AMSBIB
\by D.~K.~Belashchenko
\paper Application of the embedded atom model to liquid metals: Liquid sodium
\jour TVT
\yr 2009
\vol 47
\issue 4
\pages 522--535
\jour High Temperature
\yr 2009
\vol 47
\issue 4
\pages 494--507

Linking options:

    SHARE: FaceBook Twitter Livejournal

    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. Belashchenko D.K., “Optimal Algorithm for Constructing the Embedded Atom Method Potential for Liquid Metals”, Inorg. Mater., 47:6 (2011), 654–659  crossref  isi  elib
    2. D. K. Belashchenko, “Computer simulation of liquid zinc”, High Temperature, 50:1 (2012), 61–69  mathnet  crossref  isi  elib  elib
    3. D. K. Belashchenko, “Electron contribution to energy of alkali metals in the scheme of an embedded atom model”, High Temperature, 50:3 (2012), 331–339  mathnet  crossref  isi  elib  elib
    4. D. K. Belashchenko, “Application of the embedded atom model to liquid mercury”, High Temperature, 51:1 (2013), 40–48  mathnet  crossref  isi  elib  elib
    5. E. E. Son, “Current investigations of thermophysical properties of substances (based on recent publications in the journal High Temperature)”, High Temperature, 51:3 (2013), 351–368  mathnet  crossref  isi  elib  elib
    6. D. K. Belashchenko, “Impact compression of alkali metals: Computer-aided simulation”, High Temperature, 51:5 (2013), 626–639  mathnet  crossref  crossref  isi  elib  elib
    7. D. K. Belashchenko, “Computer simulation of liquid metals”, Phys. Usp., 56:12 (2013), 1176–1216  mathnet  crossref  crossref  adsnasa  isi  elib
    8. Liu M., Masset P., Gray-Weale A., “Solubility of Sodium in Sodium Chloride: a Density Functional Theory Molecular Dynamics Study”, J. Electrochem. Soc., 161:8 (2014), E3042–E3048  crossref  isi
    9. D. K. Belashchenko, “Hybrid potential of interparticle interaction and calculation of melting of lithium using the molecular dynamics method”, High Temperature, 53:5 (2015), 649–657  mathnet  crossref  crossref  isi  elib  elib
    10. Samin A., Li X., Zhang J., Mariani R.D., Unal C., “Ab Initio Molecular Dynamics Study of the Properties of Cerium in Liquid Sodium At 1000 K Temperature”, J. Appl. Phys., 118:23 (2015), 234902  crossref  isi
    11. Belashchenko D.K., “Structure and Thermodynamic Properties of Liquid Cesium At Pressures Below 10 Gpa and Temperatures Below 4000 K According To the Molecular Dynamics Data”, Russ. J. Phys. Chem. A, 89:11 (2015), 2051–2063  crossref  isi  elib
    12. Gaiduk E.A., Fomin Yu.D., Ryzhov V.N., Tsiok E.N., Brazhkin V.V., “Dynamical Crossover in Supercritical Core-Softened Fluids”, Fluid Phase Equilib., 417 (2016), 237–241  crossref  isi
    13. Zhang Sh. Driver K.P. Soubiran F. Militzer B., “Equation of state and shock compression of warm dense sodium–A first-principles study”, J. Chem. Phys., 146:7 (2017), 074505  crossref  isi  scopus
    14. Li X., Samin A., Zhang J., Unal C., Mariani R.D., “Ab-Initio Molecular Dynamics Study of Lanthanides in Liquid Sodium”, J. Nucl. Mater., 484 (2017), 98–102  crossref  isi  scopus
    15. Makhlaichuk V.N., “Kinematic Shear Viscosity of Liquid Alkaline Metals”, Ukr. J. Phys., 62:8 (2017), 672–678  crossref  isi  scopus
  • Teplofizika vysokikh temperatur Teplofizika vysokikh temperatur
    Number of views:
    This page:133
    Full text:42

    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2019