General information
Latest issue
Forthcoming papers
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

Latest issue
Current issues
Archive issues
What is RSS


Personal entry:
Save password
Forgotten password?

TVT, 2008, Volume 46, Issue 1, Pages 35–44 (Mi tvt999)  

This article is cited in 12 scientific papers (total in 12 papers)

Thermophysical Properties of Materials

The simulation of transport processes using the method of molecular dynamics. Self-diffusion coefficient

V. Ya. Rudyaka, A. A. Belkina, D. A. Ivanova, V. V. Egorovb

a Novosibirsk State University of Architecture and Civil Engineering
b Novosibirsk State Technical University

Abstract: The possibility is investigated of using the method of molecular dynamics for calculating the self-diffusion coefficient of liquids and gases. The exactness of calculation of the autocorrelation function of the velocity of molecules and of the self-diffusion coefficient is systematically estimated. The characteristic errors of the method are analyzed. Correlations are constructed which enable one to reduce the effect made on the results by the finiteness of the number of particles, by the time of calculation, and by the number of measurements. The method of molecular dynamics is used to obtain the self-diffusion coefficients of moderately dense gases and study the plateau values of self-diffusion coefficients. The calculations involve from 125 to 64 000 molecules.

Full text: PDF file (997 kB)

English version:
High Temperature, 2008, 46:1, 30–39

Bibliographic databases:

UDC: 532 + 533 + 541.24
PACS: 47.11.Mn; 51.10.+y; 66.30.Hs
Received: 12.10.2006

Citation: V. Ya. Rudyak, A. A. Belkin, D. A. Ivanov, V. V. Egorov, “The simulation of transport processes using the method of molecular dynamics. Self-diffusion coefficient”, TVT, 46:1 (2008), 35–44; High Temperature, 46:1 (2008), 30–39

Citation in format AMSBIB
\by V.~Ya.~Rudyak, A.~A.~Belkin, D.~A.~Ivanov, V.~V.~Egorov
\paper The simulation of transport processes using the method of molecular dynamics. Self-diffusion coefficient
\jour TVT
\yr 2008
\vol 46
\issue 1
\pages 35--44
\jour High Temperature
\yr 2008
\vol 46
\issue 1
\pages 30--39

Linking options:

    SHARE: FaceBook Twitter Livejournal

    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. Genri E. Norman, Vladimir V. Stegailov, “Stochastic theory of the classical molecular dynamics method”, Math. Models Comput. Simul., 5:4 (2013), 305–333  mathnet  crossref  mathscinet
    2. V. A. Andryuschenko, V. Ya. Rudyak, “Samodiffuziya molekul flyuida v nanokanalakh”, Vestn. Tomsk. gos. un-ta. Matem. i mekh., 2012, no. 2(18), 63–66  mathnet
    3. Rudyak V.Ya., Krasnolutskii S.L., “Simulation of the Nanofluid Viscosity Coefficient By the Molecular Dynamics Method”, Tech. Phys., 60:6 (2015), 798–804  crossref  isi  elib
    4. Kirova E.M. Norman G.E., “Viscosity Calculations At Molecular Dynamics Simulations”, Xxx International Conference on Interaction of Intense Energy Fluxes With Matter (Elbrus 2015), Journal of Physics Conference Series, 653, IOP Publishing Ltd, 2015, 012106  crossref  isi
    5. V. Ya. Rudyak, E. V. Lezhnev, “Stokhasticheskii metod modelirovaniya koeffitsientov perenosa razrezhennogo gaza”, Matem. modelirovanie, 29:3 (2017), 113–122  mathnet  elib
    6. Rudyak V.Ya., Krasnolutskii S.L., “Simulation of the Thermal Conductivity of a Nanofluid With Small Particles By Molecular Dynamics Methods”, Tech. Phys., 62:10 (2017), 1456–1465  crossref  isi  scopus
    7. Sepehrinia K., “Molecular Dynamics Simulation For Surface and Transport Properties of Fluorinated Silica Nanoparticles in Water Or Decane: Application to Gas Recovery Enhancement”, Oil Gas Sci. Technol., 72:3 (2017), 17  crossref  isi  scopus
    8. Wang R., Qian Sh., Zhang Zh., “Investigation of the Aggregation Morphology of Nanoparticle on the Thermal Conductivity of Nanofluid By Molecular Dynamics Simulations”, Int. J. Heat Mass Transf., 127:C (2018), 1138–1146  crossref  isi  scopus
    9. Rudyak V., Belkin A., “Molecular Dynamics Simulation of Fluid Viscosity in Nanochannels”, Nanosyst.-Phys. Chem. Math., 9:3 (2018), 349–355  crossref  isi
    10. Rudyak V.Ya., Lezhnev E.V., “Stochastic Algorithm For Simulating Gas Transport Coefficients”, J. Comput. Phys., 355 (2018), 95–103  crossref  mathscinet  zmath  isi  scopus
    11. Rudyak V.Ya. Minakov A.V., “Thermophysical Properties of Nanofluids”, Eur. Phys. J. E, 41:1 (2018), 15  crossref  isi  scopus
    12. Zalizniak V.E., Zolotov O.A., Ryzhkov I.I., “Effective Molecular Dynamics Model of Ionic Solutions For Large-Scale Calculations”, J. Appl. Mech. Tech. Phys., 59:1 (2018), 41–51  crossref  mathscinet  isi  scopus
  • Teplofizika vysokikh temperatur Teplofizika vysokikh temperatur
    Number of views:
    This page:212
    Full text:68

    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2019