RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Ufimsk. Mat. Zh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Ufimsk. Mat. Zh., 2011, Volume 3, Issue 3, Pages 127–139 (Mi ufa108)  

This article is cited in 7 scientific papers (total in 7 papers)

On estimate of eigenfunctions of the Steklov-type problem with a small parameter in the case of a limit spectrum degeneration

V. A. Sadovnichiia, A. G. Chechkinab

a M. V. Lomonosov Moscow State University, Faculty of Mechanics and Mathematics, Moscow, Russia
b The State Uneversity of the Ministry of Finance of the Russian Federation, Moscow, Russia

Abstract: We consider a Steklov-type problem with rapidly alternating boundary conditions (Dirichlet and Steklov) in a bounded two-dimensional domain. The parts of the boundary, where the Dirichlet boundary condition are given, have the length of the order $\varepsilon$ and they alternate with parts of the length of the same order, having the Steklov condition. We prove that the normalized eigenfunctions for a sufficiently small $\varepsilon$ satisfy the Friedrichs-type inequality with the constant of the order $\varepsilon$ and moreover, they converge to zero as $\varepsilon$ tends to zero.

Keywords: spectrum of operator, Steklov-type problem, homogenization, asymptotics.

Full text: PDF file (2326 kB)
References: PDF file   HTML file

Bibliographic databases:
UDC: 517.91
Received: 26.07.2011

Citation: V. A. Sadovnichii, A. G. Chechkina, “On estimate of eigenfunctions of the Steklov-type problem with a small parameter in the case of a limit spectrum degeneration”, Ufimsk. Mat. Zh., 3:3 (2011), 127–139

Citation in format AMSBIB
\Bibitem{SadChe11}
\by V.~A.~Sadovnichii, A.~G.~Chechkina
\paper On estimate of eigenfunctions of the Steklov-type problem with a~small parameter in the case of a~limit spectrum degeneration
\jour Ufimsk. Mat. Zh.
\yr 2011
\vol 3
\issue 3
\pages 127--139
\mathnet{http://mi.mathnet.ru/ufa108}
\zmath{https://zbmath.org/?q=an:1249.35083}


Linking options:
  • http://mi.mathnet.ru/eng/ufa108
  • http://mi.mathnet.ru/eng/ufa/v3/i3/p127

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. A. G. Chechkina, V. A. Sadovnichy, “Degeneration of Steklovtype boundary conditions in one spectral homogenization problem”, Eurasian Math. J., 6:3 (2015), 13–29  mathnet
    2. G. A. Chechkin, C. D' Apice, U. De Maio, R. R. Gadyl'shin, “On a Singularly Perturbed Steklov Problem in a Domain Perforated Along the Boundary”, C. R. Mec., 344:1 (2016), 12–18  crossref  isi  elib  scopus
    3. S. T. Erov, G. A. Chechkin, “Vibrations of a fluid containing a wide spaced net with floats under its free surface”, J. Math. Sci. (N. Y.), 234:4 (2018), 407–422  mathnet  crossref
    4. A. G. Chechkina, “Homogenization of spectral problems with singular perturbation of the Steklov condition”, Izv. Math., 81:1 (2017), 199–236  mathnet  crossref  crossref  mathscinet  adsnasa  isi  elib
    5. Chechkina A.G., “Estimate of the Spectrum Deviation of the Singularly Perturbed Steklov Problem”, Dokl. Math., 96:2 (2017), 510–513  crossref  mathscinet  zmath  isi  scopus
    6. Chechkin G.A., Gadyl'shin R.R., D'Apice C., De Maio U., “On the Steklov Problem in a Domain Perforated Along a Part of the Boundary”, ESAIM-Math. Model. Numer. Anal.-Model. Math. Anal. Numer., 51:4 (2017), 1317–1342  crossref  mathscinet  zmath  isi  scopus
    7. Beliaev A., Krichevets G., “Qualitative Effects of Hydraulic Conductivity Distribution on Groundwater Flow in Heterogeneous Soils”, Fluids, 3:4 (2018), 102  crossref  isi  scopus
  • Number of views:
    This page:374
    Full text:146
    References:57
    First page:2

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2020