RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
 General information Latest issue Archive Impact factor Search papers Search references RSS Latest issue Current issues Archive issues What is RSS

 Ufimsk. Mat. Zh.: Year: Volume: Issue: Page: Find

 Ufimsk. Mat. Zh., 2011, Volume 3, Issue 4, Pages 28–38 (Mi ufa115)

On solution of a two kernel equation represented by exponents

A. G. Barseghyan

Institute of Mathematics, National Academy of Sciences of Armenia, Yerevan, Armenia

Abstract: The integral equation with two kernels
$$f(x)=g(x)+\int_0^\infty K_1(x-t)f(t) dt+\int_{-\infty}^0K_2(x-t)f(t) dt,\quad-\infty<x<+\infty,$$
where the kernel functions $K_{1,2}(x)\in L$, is considered on the whole line. The present paper is devoted to solvability of the equation, investigation of properties of solutions and description of their structure. It is assumed that the kernel functions $K_m\ge0$ are even and represented by exponentials as a mixture of the two-sided Laplace distributions:
$$K_m(x)=\int_a^be^{-|x|s} d\sigma_m(s)\ge0,\quad m=1,2.$$
Here $\sigma_{1,2}$ are nondecreasing functions on $(a,b)\subset(0,\infty)$ such that
$$0<\lambda_1\le1, 0<\lambda_2<1,\quadгде\quad\lambda_i=\int_{-\infty}^\infty K_i(x) dx=2\int_a^b\frac1s d\sigma_i(s), i=1,2.$$

Keywords: the basic solution, Ambartsumian equation, Laplace transform, system of integral equations.

Full text: PDF file (384 kB)
References: PDF file   HTML file

Bibliographic databases:
UDC: 517.968.2

Citation: A. G. Barseghyan, “On solution of a two kernel equation represented by exponents”, Ufimsk. Mat. Zh., 3:4 (2011), 28–38

Citation in format AMSBIB
\Bibitem{Bar11} \by A.~G.~Barseghyan \paper On solution of a~two kernel equation represented by exponents \jour Ufimsk. Mat. Zh. \yr 2011 \vol 3 \issue 4 \pages 28--38 \mathnet{http://mi.mathnet.ru/ufa115} \zmath{https://zbmath.org/?q=an:1249.45003}