RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Ufimsk. Mat. Zh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Ufimsk. Mat. Zh., 2012, Volume 4, Issue 2, Pages 28–64 (Mi ufa146)  

This article is cited in 4 scientific papers (total in 4 papers)

Perturbation of an elliptic operator by a narrow potential in an $n$-dimensional domain

A. R. Bikmetov, R. R. Gadyl'shin

Bashkir State Pedagogical University, Ufa, Russia

Abstract: We study a discrete spectrum of an elliptic operator of the second order in an $n$-dimensional domain, $n\geq2$, perturbed by a potential depending on two parameters, one of the parameters describes the length of the support of the potential and the inverse of the other corresponds to the magnitude of the potential. We give the relation between these parameters, under which the generalized convergence of the perturbed operator to the unperturbed one holds. Under this relation we construct the asymptotics w.r.t. small parameters of the eigenvalues of the perturbed operators.

Keywords: elliptic operator, perturbation, matching of asymptotic expansions.

Full text: PDF file (652 kB)
References: PDF file   HTML file

Bibliographic databases:
UDC: 517.928+517.984
Received: 10.05.2012

Citation: A. R. Bikmetov, R. R. Gadyl'shin, “Perturbation of an elliptic operator by a narrow potential in an $n$-dimensional domain”, Ufimsk. Mat. Zh., 4:2 (2012), 28–64

Citation in format AMSBIB
\Bibitem{BikGad12}
\by A.~R.~Bikmetov, R.~R.~Gadyl'shin
\paper Perturbation of an elliptic operator by a~narrow potential in an $n$-dimensional domain
\jour Ufimsk. Mat. Zh.
\yr 2012
\vol 4
\issue 2
\pages 28--64
\mathnet{http://mi.mathnet.ru/ufa146}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=3432642}


Linking options:
  • http://mi.mathnet.ru/eng/ufa146
  • http://mi.mathnet.ru/eng/ufa/v4/i2/p28

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. R. R. Gadyl'shin, S. V. Repjevskij, E. A. Shishkina, “On an eigenvalue for the Laplace operator in a disk with Dirichlet boundary condition on a small part of the boundary in a critical case”, Proc. Steklov Inst. Math. (Suppl.), 292, suppl. 1 (2016), 76–90  mathnet  crossref  mathscinet  isi  elib
    2. R. R. Gadylshin, A. A. Ershov, S. V. Repyevsky, “On asymptotic formula for electric resistance of conductor with small contacts”, Ufa Math. J., 7:3 (2015), 15–27  mathnet  crossref  isi  elib
    3. D. B. Davletov, D. V. Kozhevnikov, “The problem of Steklov type in a half-cylinder with a small cavity”, Ufa Math. J., 8:4 (2016), 62–87  mathnet  crossref  isi  elib
    4. I. Kh. Khusnullin, “Vozmuschenie volnovoda uzkim potentsialom”, Tr. IMM UrO RAN, 23, no. 2, 2017, 274–284  mathnet  crossref  elib
  • Уфимский математический журнал
    Number of views:
    This page:256
    Full text:102
    References:35
    First page:2

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2019