RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Ufimsk. Mat. Zh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Ufimsk. Mat. Zh., 2012, Volume 4, Issue 2, Pages 74–79 (Mi ufa148)  

Periodic solutions of the telegraph equation with a discontinuous nonlinearity

I. F. Galikhanov, V. N. Pavlenko

Chelyabinsk State University, Chelyabinsk, Russia

Abstract: We consider telegraph equations with a variable inner energy, discontinuous by phase, and the homogeneous Dirichlet boundary condition. Question of existence of general periodic solutions in the resonant case, when the operator created by a linear part of the equation with the homogeneous Dirichlet boundary condition and the condition of periodicity has a non zero kernel, and nonlinearity appearing in the equation is limited. We obtained an existence theorem for the general periodic solution bt means of the topological method. The proof is based on the Leray–Schauder principle for convex compact mappings. The main difference from similar results of other authors is an assumption that there are breaks in the phase variable of the inner energy of the telegraph equation.

Keywords: nonlinear telegraph equation, discontinuous nonlinearity, periodic solutions, resonance problem.

Full text: PDF file (421 kB)
References: PDF file   HTML file

Bibliographic databases:
UDC: 517.956.2
Received: 10.01.2012

Citation: I. F. Galikhanov, V. N. Pavlenko, “Periodic solutions of the telegraph equation with a discontinuous nonlinearity”, Ufimsk. Mat. Zh., 4:2 (2012), 74–79

Citation in format AMSBIB
\Bibitem{GalPav12}
\by I.~F.~Galikhanov, V.~N.~Pavlenko
\paper Periodic solutions of the telegraph equation with a~discontinuous nonlinearity
\jour Ufimsk. Mat. Zh.
\yr 2012
\vol 4
\issue 2
\pages 74--79
\mathnet{http://mi.mathnet.ru/ufa148}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=3432644}


Linking options:
  • http://mi.mathnet.ru/eng/ufa148
  • http://mi.mathnet.ru/eng/ufa/v4/i2/p74

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles
  • ”фимский математический журнал
    Number of views:
    This page:339
    Full text:93
    References:43
    First page:2

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2019