RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Ufimsk. Mat. Zh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Ufimsk. Mat. Zh., 2012, Volume 4, Issue 3, Pages 104–154 (Mi ufa158)  

This article is cited in 11 scientific papers (total in 11 papers)

Integrable evolution equations with a constant separant

A. G. Meshkova, V. V. Sokolovb

a Orel State Technical University, Orel, Russia
b Landau Institute for Theoretical Physics, Russian Academy of Sciences, Chernogolovka, Moscow. reg., Russia

Abstract: The survey contains results of classification for integrable one-field evolution equations of orders 2, 3 and 5 with the constant separant. The classification is based on neccesary integrability conditions that follow from the existence of the formal recursion operator for integrable equations. Recursion formulas for the whole infinite sequence of these conditions are presented for the first time. The most of the classification statements can be found in papers by S. I. Svinilupov and V. V. Sokolov but the proofs never been published before. The result concerning the fifth order equations is stronger then obtained before.

Keywords: evolution differential equation, integrability, higher symmetry, conservation law, classification.

Full text: PDF file (995 kB)
References: PDF file   HTML file
UDC: 517.957
Received: 20.01.2012

Citation: A. G. Meshkov, V. V. Sokolov, “Integrable evolution equations with a constant separant”, Ufimsk. Mat. Zh., 4:3 (2012), 104–154

Citation in format AMSBIB
\Bibitem{MesSok12}
\by A.~G.~Meshkov, V.~V.~Sokolov
\paper Integrable evolution equations with a~constant separant
\jour Ufimsk. Mat. Zh.
\yr 2012
\vol 4
\issue 3
\pages 104--154
\mathnet{http://mi.mathnet.ru/ufa158}


Linking options:
  • http://mi.mathnet.ru/eng/ufa158
  • http://mi.mathnet.ru/eng/ufa/v4/i3/p104

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. De Sole A., Kac V.G., “Non-Local Poisson Structures and Applications to the Theory of Integrable Systems”, Jap. J. Math., 8:2 (2013), 233–347  crossref  mathscinet  zmath  isi  scopus
    2. Meshkov A., Sokolov V., “Vector Hyperbolic Equations on the Sphere Possessing Integrable Third-Order Symmetries”, Lett. Math. Phys., 104:3 (2014), 341–360  crossref  mathscinet  zmath  isi  elib  scopus
    3. V. E. Adler, “Necessary integrability conditions for evolutionary lattice equations”, Theoret. and Math. Phys., 181:2 (2014), 1367–1382  mathnet  crossref  crossref  mathscinet  adsnasa  isi  elib  elib
    4. Meshkov A.G., Sokolov V.V., “Integrable Evolution Hamiltonian Equations of the Third Order With the Hamiltonian Operator D-X”, J. Geom. Phys., 85 (2014), 245–251  crossref  mathscinet  zmath  isi  scopus
    5. M. Yu. Balakhnev, “Differential Substitutions for Vectorial Generalizations of the mKdV Equation”, Math. Notes, 98:2 (2015), 204–209  mathnet  crossref  crossref  mathscinet  isi  elib
    6. Meshkov A.G., Sokolov V.V., “Integrable Hamiltonian Equations of Fifth Order With Hamiltonian Operator D-X”, Russ. J. Math. Phys., 22:2 (2015), 201–214  crossref  mathscinet  zmath  isi  scopus
    7. V. E. Adler, “Integrability Test For Evolutionary Lattice Equations of Higher Order”, J. Symb. Comput., 74 (2016), 125–139  crossref  mathscinet  zmath  isi  scopus
    8. Ufa Math. J., 9:3 (2017), 158–164  mathnet  crossref  mathscinet  isi  elib  elib
    9. A. V. Bochkarev, A. I. Zemlyanukhin, “The geometric series method for constructing exact solutions to nonlinear evolution equations”, Comput. Math. Math. Phys., 57:7 (2017), 1111–1123  mathnet  crossref  crossref  isi  elib
    10. I. T. Habibullin, A. R. Khakimova, “On a Method For Constructing the Lax Pairs For Integrable Models Via a Quadratic Ansatz”, J. Phys. A-Math. Theor., 50:30 (2017), 305206  crossref  mathscinet  zmath  isi  scopus
    11. A. G. Meshkov, V. V. Sokolov, “On Third Order Integrable Vector Hamiltonian Equations”, J. Geom. Phys., 113 (2017), 206–214  crossref  mathscinet  zmath  isi  scopus
  • Уфимский математический журнал
    Number of views:
    This page:387
    Full text:148
    References:32
    First page:2

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2019