|
This article is cited in 15 scientific papers (total in 15 papers)
Integrable evolution equations with a constant separant
A. G. Meshkova, V. V. Sokolovb a Orel State Technical University, Orel, Russia
b Landau Institute for Theoretical Physics, Russian Academy of Sciences, Chernogolovka, Moscow. reg., Russia
Abstract:
The survey contains results of classification for integrable one-field evolution equations of orders 2, 3 and 5 with the constant separant. The classification is based on neccesary integrability conditions that follow from the existence of the formal recursion operator for integrable equations. Recursion formulas for the whole infinite sequence of these conditions are presented for the first time. The most of the classification statements can be found in papers by S. I. Svinilupov and V. V. Sokolov but the proofs never been published before. The result concerning the fifth order equations is stronger then obtained before.
Keywords:
evolution differential equation, integrability, higher symmetry, conservation law, classification.
Full text:
PDF file (995 kB)
References:
PDF file
HTML file
UDC:
517.957 Received: 20.01.2012
Citation:
A. G. Meshkov, V. V. Sokolov, “Integrable evolution equations with a constant separant”, Ufimsk. Mat. Zh., 4:3 (2012), 104–154
Citation in format AMSBIB
\Bibitem{MesSok12}
\by A.~G.~Meshkov, V.~V.~Sokolov
\paper Integrable evolution equations with a~constant separant
\jour Ufimsk. Mat. Zh.
\yr 2012
\vol 4
\issue 3
\pages 104--154
\mathnet{http://mi.mathnet.ru/ufa158}
Linking options:
http://mi.mathnet.ru/eng/ufa158 http://mi.mathnet.ru/eng/ufa/v4/i3/p104
Citing articles on Google Scholar:
Russian citations,
English citations
Related articles on Google Scholar:
Russian articles,
English articles
This publication is cited in the following articles:
-
De Sole A., Kac V.G., “Non-Local Poisson Structures and Applications to the Theory of Integrable Systems”, Jap. J. Math., 8:2 (2013), 233–347
-
Meshkov A., Sokolov V., “Vector Hyperbolic Equations on the Sphere Possessing Integrable Third-Order Symmetries”, Lett. Math. Phys., 104:3 (2014), 341–360
-
V. E. Adler, “Necessary integrability conditions for evolutionary lattice
equations”, Theoret. and Math. Phys., 181:2 (2014), 1367–1382
-
Meshkov A.G., Sokolov V.V., “Integrable Evolution Hamiltonian Equations of the Third Order With the Hamiltonian Operator D-X”, J. Geom. Phys., 85 (2014), 245–251
-
M. Yu. Balakhnev, “Differential Substitutions for Vectorial Generalizations of the mKdV Equation”, Math. Notes, 98:2 (2015), 204–209
-
Meshkov A.G., Sokolov V.V., “Integrable Hamiltonian Equations of Fifth Order With Hamiltonian Operator D-X”, Russ. J. Math. Phys., 22:2 (2015), 201–214
-
V. E. Adler, “Integrability Test For Evolutionary Lattice Equations of Higher Order”, J. Symb. Comput., 74 (2016), 125–139
-
Ufa Math. J., 9:3 (2017), 158–164
-
A. V. Bochkarev, A. I. Zemlyanukhin, “The geometric series method for constructing exact solutions to nonlinear evolution equations”, Comput. Math. Math. Phys., 57:7 (2017), 1111–1123
-
I. T. Habibullin, A. R. Khakimova, “On a Method For Constructing the Lax Pairs For Integrable Models Via a Quadratic Ansatz”, J. Phys. A-Math. Theor., 50:30 (2017), 305206
-
A. G. Meshkov, V. V. Sokolov, “On Third Order Integrable Vector Hamiltonian Equations”, J. Geom. Phys., 113 (2017), 206–214
-
R. N. Garifullin, R. I. Yamilov, “Ob integriruemosti reshetochnykh uravnenii s dvumya kontinualnymi predelami”, Matematicheskaya fizika, Itogi nauki i tekhn. Ser. Sovrem. mat. i ee pril. Temat. obz., 152, VINITI RAN, M., 2018, 159–164
-
Carillo S., “Kdv-Type Equations Linked Via Backlund Transformations: Remarks and Perspectives”, Appl. Numer. Math., 141:SI (2019), 81–90
-
Igonin S., Manno G., “Lie Algebras Responsible For Zero-Curvature Representations of Scalar Evolution Equations”, J. Geom. Phys., 138 (2019), 297–316
-
Carillo S., Lo Schiavo M., Schiebold C., “Abelian Versus Non-Abelian Backlund Charts: Some Remarks”, Evol. Equ. Control Theory, 8:1, SI (2019), 43–55
|
Number of views: |
This page: | 464 | Full text: | 182 | References: | 33 | First page: | 2 |
|