RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Ufimsk. Mat. Zh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Ufimsk. Mat. Zh., 2012, Volume 4, Issue 3, Pages 155–160 (Mi ufa159)  

This article is cited in 3 scientific papers (total in 3 papers)

Characteristic Lie ring of the Zhiber–Shabat–Tzitzeica equation

A. U. Sakieva

Institute of Mathematics with Computing Centre, Ufa Science Centre, Russian Academy of Sciences, Ufa, Russia

Abstract: A complete description of the characteristic Lie ring for the Zhiber–Shabat–Tzitzeica equation is given. For the linear space of multiple commutators of arbitrary order a basis is constructed. It is proved that the characteristic Lie ring is a ring of slow growth.

Keywords: Lie ring, nonlinear hyperbolic equation, integral, vector field.

Full text: PDF file (465 kB)
References: PDF file   HTML file
UDC: 517.9
Received: 25.04.2012

Citation: A. U. Sakieva, “Characteristic Lie ring of the Zhiber–Shabat–Tzitzeica equation”, Ufimsk. Mat. Zh., 4:3 (2012), 155–160

Citation in format AMSBIB
\Bibitem{Sak12}
\by A.~U.~Sakieva
\paper Characteristic Lie ring of the Zhiber--Shabat--Tzitzeica equation
\jour Ufimsk. Mat. Zh.
\yr 2012
\vol 4
\issue 3
\pages 155--160
\mathnet{http://mi.mathnet.ru/ufa159}


Linking options:
  • http://mi.mathnet.ru/eng/ufa159
  • http://mi.mathnet.ru/eng/ufa/v4/i3/p155

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. D. V. Millionshchikov, “Characteristic Lie algebras of the sinh-Gordon and Tzitzeica equations”, Russian Math. Surveys, 72:6 (2017), 1174–1176  mathnet  crossref  crossref  mathscinet  adsnasa  isi  elib
    2. M. N. Poptsova, I. T. Habibullin, “Algebraic properties of quasilinear two-dimensional lattices connected with integrability”, Ufa Math. J., 10:3 (2018), 86–105  mathnet  crossref  isi
    3. Millionshchikov D., “Lie Algebras of Slow Growth and Klein-Gordon Pde”, Algebr. Represent. Theory, 21:5 (2018), 1037–1069  crossref  mathscinet  zmath  isi  scopus
  • ”фимский математический журнал
    Number of views:
    This page:158
    Full text:67
    References:23
    First page:2

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2019