RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Ufimsk. Mat. Zh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Ufimsk. Mat. Zh., 2013, Volume 5, Issue 3, Pages 96–120 (Mi ufa212)  

This article is cited in 9 scientific papers (total in 9 papers)

A closedness of set of Dirichlet series sums

A. S. Krivosheyeva, O. A. Krivosheyevab

a Institute of Mathematics USC RAS, Chernyshevsky str., 112, 450008, Ufa, Russia
b Bashkir State University, Z. Validi str., 32, 450074, Ufa, Russia

Abstract: In the work we consider Dirichlet series. We study the problem of closedness for the set of the sums for such series in the space of functions holomorphic in a convex domain of a complex plane with a topology of uniform convergence on compact subsets. We obtain necessary and sufficient conditions under those every function from the closure of a linear span of exponents with positive indices is represented by a Dirichlet series. These conditions can be formulated only in terms of geometric characteristics of an index sequence and of the convex domain.

Keywords: exponent, convex domain, Dirichlet series, entire function, invariant subspace.

Full text: PDF file (595 kB)
References: PDF file   HTML file

English version:
Ufa Mathematical Journal, 2013, 5:3, 94–117 (PDF, 296 kB); https://doi.org/10.13108/2013-5-3-94

UDC: 517.5
MSC: 41A05, 41А30
Received: 28.05.2013

Citation: A. S. Krivosheyev, O. A. Krivosheyeva, “A closedness of set of Dirichlet series sums”, Ufimsk. Mat. Zh., 5:3 (2013), 96–120; Ufa Math. J., 5:3 (2013), 94–117

Citation in format AMSBIB
\Bibitem{KriKri13}
\by A.~S.~Krivosheyev, O.~A.~Krivosheyeva
\paper A closedness of set of Dirichlet series sums
\jour Ufimsk. Mat. Zh.
\yr 2013
\vol 5
\issue 3
\pages 96--120
\mathnet{http://mi.mathnet.ru/ufa212}
\elib{http://elibrary.ru/item.asp?id=20930803}
\transl
\jour Ufa Math. J.
\yr 2013
\vol 5
\issue 3
\pages 94--117
\crossref{https://doi.org/10.13108/2013-5-3-94}


Linking options:
  • http://mi.mathnet.ru/eng/ufa212
  • http://mi.mathnet.ru/eng/ufa/v5/i3/p96

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. A. I. Abdulnagimov, A. S. Krivoshyev, “Properly distributed subsequence on the line”, Ufa Math. J., 7:1 (2015), 3–12  mathnet  crossref  mathscinet  isi  elib
    2. S. G. Merzlyakov, S. V. Popenov, “Interpolation by series of exponentials in $H(D)$ with real nodes”, Ufa Math. J., 7:1 (2015), 46–57  mathnet  crossref  isi  elib
    3. A. I. Abdulnagimov, A. S. Krivosheyev, “Properly distributed subsets in complex plane”, St. Petersburg Math. J., 28:4 (2017), 433–464  mathnet  crossref  mathscinet  isi  elib
    4. A. I. Abdulnagimov, A. S. Krivoshyev, “Representation of analytic functions”, Ufa Math. J., 8:4 (2016), 3–23  mathnet  crossref  mathscinet  isi  elib
    5. O. A. Krivosheyeva, A. S. Krivosheyev, “A representation of functions from an invariant subspace with almost real spectrum”, St. Petersburg Math. J., 29:4 (2018), 603–641  mathnet  crossref  mathscinet  isi  elib
    6. A. S. Krivosheev, A. F. Kuzhaev, “On one Leontiev-Levin theorem”, Ufa Math. J., 9:3 (2017), 87–99  mathnet  crossref  isi  elib
    7. O. A. Krivosheeva, “Basis in invariant subspace of analytical functions”, Ufa Math. J., 10:2 (2018), 58–77  mathnet  crossref  isi
    8. O. A. Krivosheeva, A. S. Krivosheev, “Singular points for the sum of a series of exponential monomials”, Probl. anal. Issues Anal., 7(25), spetsvypusk (2018), 72–87  mathnet  crossref  elib
    9. S. G. Merzlyakov, S. V. Popenov, “Interpolyatsiya summami ryadov eksponent s pokazatelyami, sguschayuschimisya v odnom napravlenii”, Kompleksnyi analiz. Matematicheskaya fizika, Itogi nauki i tekhn. Ser. Sovrem. mat. i ee pril. Temat. obz., 162, VINITI RAN, M., 2019, 62–79  mathnet  mathscinet
  • Уфимский математический журнал
    Number of views:
    This page:314
    Full text:142
    References:49
    First page:2

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2020