RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PERSONAL OFFICE
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Ufimsk. Mat. Zh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Ufimsk. Mat. Zh., 2014, Volume 6, Issue 1, Pages 30–58 (Mi ufa231)  

This article is cited in 3 scientific papers (total in 3 papers)

Discrete spectrum of thin $\mathcal{PT}$-symmetric waveguide

D.I. Borisovab

a Institute of Mathematics with Computing Centre, Ufa Science Centre, Russian Academy of Sciences, Ufa, Russia
b Bashkir State Pedagogical University, Ufa, Russia

Abstract: In a thin multidimensional layer we consider a differential second order $\mathcal{PT}$-symmetric operator. The operator is of rather general form and its coefficients are arbitrary functions depending both on slow and fast variables. The $\mathcal{PT}$-symmetry of the operator is ensured by the boundary conditions of Robin type with pure imaginary coefficient. In the work we determine the limiting operator, prove the uniform resolvent convergence of the perturbed operator to the limiting one, and derive the estimates for the rates of convergence. We establish the convergence of the spectrum of perturbed operator to that of the limiting one. For the perturbed eigenvalues converging to the limiting discrete ones we prove that they are real and construct their complete asymptotic expansions. We also obtain the complete asymptotic expansions for the associated eigenfunctions.

Keywords: $\mathcal{PT}$-symmetric operator, thin domain, uniform resolvent convergence, estimates for the rate of convergence, spectrum, asymptotic expansions.

Full text: PDF file (707 kB)
References: PDF file   HTML file

English version:
Ufa Mathematical Journal, 2014, 6:1, 29–55 (PDF, 671 kB); https://doi.org/10.13108/2014-6-1-29

Bibliographic databases:

Document Type: Article
UDC: 517.9
MSC: 35P05, 35B25, 35C20
Received: 14.08.2013

Citation: D.I. Borisov, “Discrete spectrum of thin $\mathcal{PT}$-symmetric waveguide”, Ufimsk. Mat. Zh., 6:1 (2014), 30–58; Ufa Math. J., 6:1 (2014), 29–55

Citation in format AMSBIB
\Bibitem{Bor14}
\by D.I.~Borisov
\paper Discrete spectrum of thin $\mathcal{PT}$-symmetric waveguide
\jour Ufimsk. Mat. Zh.
\yr 2014
\vol 6
\issue 1
\pages 30--58
\mathnet{http://mi.mathnet.ru/ufa231}
\elib{http://elibrary.ru/item.asp?id=21290425}
\transl
\jour Ufa Math. J.
\yr 2014
\vol 6
\issue 1
\pages 29--55
\crossref{https://doi.org/10.13108/2014-6-1-29}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000371149500003}
\scopus{http://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84899697311}


Linking options:
  • http://mi.mathnet.ru/eng/ufa231
  • http://mi.mathnet.ru/eng/ufa/v6/i1/p30

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. D.I. Borisov, “The Emergence of Eigenvalues of a $\mathcal{PT}$-Symmetric Operator in a Thin Strip”, Math. Notes, 98:6 (2015), 872–883  mathnet  crossref  crossref  mathscinet  isi  elib
    2. R. Novak, “Bound States in Waveguides With Complex Robin Boundary Conditions”, Asymptotic Anal., 96:3-4 (2016), 251–281  crossref  zmath  isi  elib  scopus
    3. D. I. Borisov, M. Znojil, “On eigenvalues of a $\mathscr{PT}$-symmetric operator in a thin layer”, Sb. Math., 208:2 (2017), 173–199  mathnet  crossref  crossref  mathscinet  adsnasa  isi  elib
  • ”фимский математический журнал
    Number of views:
    This page:217
    Full text:103
    References:54

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2019