RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Ufimsk. Mat. Zh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Ufimsk. Mat. Zh., 2014, Volume 6, Issue 2, Pages 36–44 (Mi ufa241)  

Entire functions with fine asymptotic estimates for convex functions

K. P. Isaeva, R. S. Yulmukhametova, A. A. Yunusovb

a Institute of Mathematics with Computing Centre, Ufa Science Centre, Russian Academy of Sciences, Ufa, Russia
b Bashkir State University, Ufa, Russia

Abstract: In the paper we propose an entire function such that the logarithm of its modulus asymptotically approximates the given subharmonic function $\widetilde h(\operatorname{Re}z)$, where $\widetilde h$ is the Legendre transformation of a convex function $h(t)$ on $(-1;1)$ with the property $\exp(h(t))=o((1-|t|)^n)$, $n\in\mathbb N$. Such functions have applications in the issues on representation by exponential series of functions in integral weighted spaces on the interval $(-1;1)$ with the weight $\exp h(t)$. At that, better the approximation, a finer topology can be used for the representation by exponential series. For functions $h$ obeying $(1-|t|)^n=O(\exp(h(t)))$, $n\in\mathbb N$, the corresponding entire functions were constructed before. In the present paper we consider the functions satisfying $\exp(h(t))=o((1-|t|)^n)$, $n\in\mathbb N$. In the suggested construction we take into consideration the necessary conditions for the distribution of exponents for the exponentials in the unconditional bases obtained in previous works. This is why the main result of the paper (Theorem 1) should be treated not as a tool for constructing unconditional bases but as an argument supporting the absence of such bases.

Keywords: entire functions, subharmonic function, Riesz measure, Hilbert space, Riesz bases.

Full text: PDF file (433 kB)
References: PDF file   HTML file

English version:
Ufa Mathematical Journal, 2014, 6:2, 35–43 (PDF, 328 kB); https://doi.org/10.13108/2014-6-2-35

UDC: 517.574
MSC: 30D20
Received: 22.02.2014

Citation: K. P. Isaev, R. S. Yulmukhametov, A. A. Yunusov, “Entire functions with fine asymptotic estimates for convex functions”, Ufimsk. Mat. Zh., 6:2 (2014), 36–44; Ufa Math. J., 6:2 (2014), 35–43

Citation in format AMSBIB
\Bibitem{IsaYulYun14}
\by K.~P.~Isaev, R.~S.~Yulmukhametov, A.~A.~Yunusov
\paper Entire functions with fine asymptotic estimates for convex functions
\jour Ufimsk. Mat. Zh.
\yr 2014
\vol 6
\issue 2
\pages 36--44
\mathnet{http://mi.mathnet.ru/ufa241}
\elib{http://elibrary.ru/item.asp?id=21596973}
\transl
\jour Ufa Math. J.
\yr 2014
\vol 6
\issue 2
\pages 35--43
\crossref{https://doi.org/10.13108/2014-6-2-35}
\scopus{http://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84928200571}


Linking options:
  • http://mi.mathnet.ru/eng/ufa241
  • http://mi.mathnet.ru/eng/ufa/v6/i2/p36

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles
  • Уфимский математический журнал
    Number of views:
    This page:266
    Full text:112
    References:24

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2020