RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Ufimsk. Mat. Zh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Ufimsk. Mat. Zh., 2017, Volume 9, Issue 2, Pages 17–24 (Mi ufa372)  

Integration of equation of Toda periodic chain kind

B. A. Babajanov, A. B. Khasanov

Urgench State University named after Al-Khorezmi

Abstract: In this work we apply the method of the inverse spectral problem to integrating an equation of Toda periodic chain kind. For the one-band case we write out explicit formulae for the solutions to an analogue of Dubrovin system of equations and thus, for our problem. These solutions are expressed in term of Jacobi elliptic functions.

Keywords: Toda chain, discrete Hill operator, inverse spectral problem, trace formulae

Full text: PDF file (305 kB)
References: PDF file   HTML file

English version:
Ufa Mathematical Journal, 2017, 9:2, 17–24 (PDF, 303 kB); https://doi.org/10.13108/2017-9-2-17

Bibliographic databases:

UDC: 517.957
MSC: 34K29, 37K15, 39A10
Received: 12.05.2016

Citation: B. A. Babajanov, A. B. Khasanov, “Integration of equation of Toda periodic chain kind”, Ufimsk. Mat. Zh., 9:2 (2017), 17–24; Ufa Math. J., 9:2 (2017), 17–24

Citation in format AMSBIB
\Bibitem{BabKha17}
\by B.~A.~Babajanov, A.~B.~Khasanov
\paper Integration of equation of Toda periodic chain kind
\jour Ufimsk. Mat. Zh.
\yr 2017
\vol 9
\issue 2
\pages 17--24
\mathnet{http://mi.mathnet.ru/ufa372}
\elib{http://elibrary.ru/item.asp?id=29419137}
\transl
\jour Ufa Math. J.
\yr 2017
\vol 9
\issue 2
\pages 17--24
\crossref{https://doi.org/10.13108/2017-9-2-17}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000411738600002}
\scopus{http://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85023622645}


Linking options:
  • http://mi.mathnet.ru/eng/ufa372
  • http://mi.mathnet.ru/eng/ufa/v9/i2/p17

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles
  • Уфимский математический журнал
    Number of views:
    This page:118
    Full text:48
    References:19

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2019