RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PERSONAL OFFICE
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Ufimsk. Mat. Zh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Ufimsk. Mat. Zh., 2010, Volume 2, Issue 1, Pages 17–34 (Mi ufa39)  

This article is cited in 2 scientific papers (total in 2 papers)

Resolvent of finite-dimensional perturbed of the correct problems for the biharmonic operator

G. E. Berikhanova, B. E. Kanguzhin

Semipalatinsk State Pedagogical Institute, Semei, Kazakhstan

Abstract: In this work we give a complete description of the well-posed solvability of boundary problems for biharmonic operators in a circle. Then written out their finite perturbations, which also well-posed solved. Formulas are given the resolvent of the operator.

Keywords: modeling of plates, correct problem, Dirichlet problem, biharmonic equation, Green function, resolvent operator.

Full text: PDF file (433 kB)
References: PDF file   HTML file

Bibliographic databases:

Document Type: Article
UDC: 517.95
Received: 05.01.2010

Citation: G. E. Berikhanova, B. E. Kanguzhin, “Resolvent of finite-dimensional perturbed of the correct problems for the biharmonic operator”, Ufimsk. Mat. Zh., 2:1 (2010), 17–34

Citation in format AMSBIB
\Bibitem{BerKan10}
\by G.~E.~Berikhanova, B.~E.~Kanguzhin
\paper Resolvent of finite-dimensional perturbed of the correct problems for the biharmonic operator
\jour Ufimsk. Mat. Zh.
\yr 2010
\vol 2
\issue 1
\pages 17--34
\mathnet{http://mi.mathnet.ru/ufa39}
\zmath{https://zbmath.org/?q=an:1240.35135}


Linking options:
  • http://mi.mathnet.ru/eng/ufa39
  • http://mi.mathnet.ru/eng/ufa/v2/i1/p17

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. B. E. Kanguzhin, D. B. Nurakhmetov, N. E. Tokmagambetov, “Approksimativnye svoistva sistem kornevykh funktsii, porozhdaemye korrektno razreshimymi kraevymi zadachami dlya obyknovennykh differentsialnykh uravnenii vysshikh poryadkov”, Ufimsk. matem. zhurn., 3:3 (2011), 80–92  mathnet  zmath
    2. B. E. Kanguzhin, D. B. Nurakhmetov, N. E. Tokmagambetov, “Laplace operator with $\delta$-like potentials”, Russian Math. (Iz. VUZ), 58:2 (2014), 6–12  mathnet  crossref
  • Уфимский математический журнал
    Number of views:
    This page:249
    Full text:111
    References:22
    First page:2

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2019