Ufimskii Matematicheskii Zhurnal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Ufimsk. Mat. Zh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Ufimsk. Mat. Zh., 2017, Volume 9, Issue 4, Pages 45–54 (Mi ufa402)  

This article is cited in 1 scientific paper (total in 1 paper)

On global instability of solutions to hyperbolic equations with non-Lipschitz nonlinearity

Y. Sh. Il'yasov, E. E. Kholodnov

Institute of Mathematics, Ufa Scientific Center, RAS, Chernyshevsky str. 112, 450077, Ufa, Russia

Abstract: In a bounded domain $\Omega \subset \mathbb{R}^n$, we consider the following hyperbolic equation
\begin{equation*} \begin{cases} v_{tt} = \Delta_p v+\lambda |v|^{p-2}v-|v|^{\alpha-2}v,& x\in \Omega,
v\bigr{|}_{\partial \Omega}=0. \end{cases} \end{equation*}
We assume that $1<\alpha<p<+\infty$; this implies that the nonlinearity in the right hand side of the equation is of a non-Lipschitz type. As a rule, this type of nonlinearity prevent us from applying standard methods from the theory of nonlinear differential equations. An additional difficulty arises due to the presence of the $ p $-Laplacian $\Delta_p (\cdot):=div(|\nabla(\cdot)|^{p-2}\nabla(\cdot))$ in the equation. In the first result, the theorem on the existence of the so-called stationary ground state of the equation is proved. The proof of this result is based on the Nehari manifold method. In the main result of the paper we state that each stationary ground state is unstable globally in time. The proof is based on the development of an approach by Payne and Sattinger introduced for studying the stability of solutions to hyperbolic equations.

Keywords: stability of solutions, nonlinear hyperbolic equations, Nehari manifold method, $p$-Laplacian.

Full text: PDF file (413 kB)
References: PDF file   HTML file

English version:
Ufa Mathematical Journal, 2017, 9:4, 44–53 (PDF, 372 kB); https://doi.org/10.13108/2017-9-4-44

Bibliographic databases:

UDC: 517.957
MSC: 35J61, 35J92, 35J50
Received: 28.08.2017

Citation: Y. Sh. Il'yasov, E. E. Kholodnov, “On global instability of solutions to hyperbolic equations with non-Lipschitz nonlinearity”, Ufimsk. Mat. Zh., 9:4 (2017), 45–54; Ufa Math. J., 9:4 (2017), 44–53

Citation in format AMSBIB
\Bibitem{IlyKho17}
\by Y.~Sh.~Il'yasov, E.~E.~Kholodnov
\paper On global instability of solutions to hyperbolic equations with non-Lipschitz nonlinearity
\jour Ufimsk. Mat. Zh.
\yr 2017
\vol 9
\issue 4
\pages 45--54
\mathnet{http://mi.mathnet.ru/ufa402}
\elib{https://elibrary.ru/item.asp?id=30562591}
\transl
\jour Ufa Math. J.
\yr 2017
\vol 9
\issue 4
\pages 44--53
\crossref{https://doi.org/10.13108/2017-9-4-44}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000424521900005}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85038124148}


Linking options:
  • http://mi.mathnet.ru/eng/ufa402
  • http://mi.mathnet.ru/eng/ufa/v9/i4/p45

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. E. E. Kholodnov, “Ob osnovnykh sostoyaniyakh i resheniyakh s kompaktnymi nositelyami ellipticheskikh uravnenii s nelipshitsevymi nelineinostyami”, Differentsialnye uravneniya, Itogi nauki i tekhn. Ser. Sovrem. mat. i ee pril. Temat. obz., 163, VINITI RAN, M., 2019, 108–112  mathnet  mathscinet
  • Уфимский математический журнал
    Number of views:
    This page:120
    Full text:52
    References:18

     
    Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2021