RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PERSONAL OFFICE
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Ufimsk. Mat. Zh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Ufimsk. Mat. Zh., 2018, Volume 10, Issue 1, Pages 83–95 (Mi ufa420)  

Behavior of singular integral with Hilbert kernel at weak continuity point of density

R. B. Salimov

Kazan State University of Architecture and Engineering, Zelenaya str. 1, 420043, Kazan, Russia

Abstract: We consider the singular integral with the Hilbert kernel
$$ I(\gamma_0)=\int\limits^{2\pi}_{0} \varphi(\gamma)\cot\frac{\gamma-\gamma_0}{2}  d\gamma, $$
whose density $\varphi(\gamma)$ is a continuous in $[0, 2\pi]$ function, $\gamma_0 \in [0, 2\pi]$, $\varphi(0)=\varphi(2\pi)$, and the integral is treated in the sense of its principal value. We assume that in the vicinity of a fixed point $\gamma = c$, $c\in(c^{-},c^{+})\subset[0, 2\pi]$, $c^{+}-c^{-}<1$, the density $\varphi(\gamma)$ satisfies the representation $ \varphi(\gamma)=\frac{\Phi(\gamma)}{(-\ln \sin^2 \frac{\gamma-c}{2})^{\beta}},  \gamma \in (c^{-},c^{+}), $ where $\Phi(\gamma)$ is a given continuous in $[c^{-},c]$, $[c,c^{+}]$ function with not necessarily coinciding one-sided limits $\Phi(c-0)$ and $\Phi(c+0)$, $\beta$ is a given number, and $\beta>1$. We suppose that the representations $\Phi(\gamma)-\Phi(c\pm0) = \frac{\chi(\gamma)}{( -\ln \sin^2 \frac{\gamma-c}{2})^{\delta}}, $ $ \chi'(\gamma)=\frac{\nu(\gamma)}{(-\ln \sin^2 \frac{\gamma-c}{2})\tan\frac{\gamma-c}{2}}, $ hold, where $\delta>0$ is a given number, $\chi(\gamma)$, $\nu(\gamma)$ are given functions continuous in each of the intervals $[c^{-},c]$, $[c,c^{+}]$, $\nu(c\pm0)=0$, $\Phi(c+0)$ is taken as $\gamma > c$, $\Phi(c-0)$ is taken as $\gamma < c$.
We prove that under the above conditions the representation
\begin{align*} I(\gamma_0)&-I(c)= \frac{\Phi(c-0)-\Phi(c+0)}{(\beta-1)(-\ln\sin^2\frac{\gamma_0-c}{2})^{\beta-1}}
&- \frac{U(c+0)-U(c-0)}{\tilde{\beta}(\tilde{\beta}-1) (-\ln\sin^2\frac{\gamma_0-c}{2})^{\tilde{\beta}-1}}+ o(\frac{1}{(-\ln\sin^2\frac{\gamma_0-c}{2})^{\tilde{\beta}-1}}) +O(\frac{1}{(-\ln\sin^2\frac{\gamma_0-c}{2})^{\beta}}), \end{align*}
holds as $\gamma_0\to c$. Here $\tilde{\beta}=\beta+\delta$, $\beta>1$, $\delta>0$, $U(c+0)-U(c-0)=\tilde{\beta}(\chi(c+0)-\chi(c-0))$. We also consider the case $\beta=1$. A distinguishing feature of the paper is that while studying the behavior of the considered singular integral in the vicinity of the weak continuity point of its density, we need the Hölder condition no for the density neither for a component of the density. This feature allowed us to extend the range of possible applications of our results.

Keywords: singular integral, Hilbert kernel, Hölder condition, weak continuity.

Funding Agency Grant Number
Russian Foundation for Basic Research 12-01-00636_а
The work is financially supported by RFBR (project no. 12-01-00636-a).


Full text: PDF file (409 kB)
References: PDF file   HTML file

English version:
Ufa Mathematical Journal, 2018, 10:1, 80–93 (PDF, 367 kB); https://doi.org/10.13108/2018-10-1-80

Bibliographic databases:

Document Type: Article
UDC: 517.54
MSC: 30G12
Received: 08.02.2017

Citation: R. B. Salimov, “Behavior of singular integral with Hilbert kernel at weak continuity point of density”, Ufimsk. Mat. Zh., 10:1 (2018), 83–95; Ufa Math. J., 10:1 (2018), 80–93

Citation in format AMSBIB
\Bibitem{Sal18}
\by R.~B.~Salimov
\paper Behavior of singular integral with Hilbert kernel at weak continuity point of density
\jour Ufimsk. Mat. Zh.
\yr 2018
\vol 10
\issue 1
\pages 83--95
\mathnet{http://mi.mathnet.ru/ufa420}
\elib{http://elibrary.ru/item.asp?id=32705555}
\transl
\jour Ufa Math. J.
\yr 2018
\vol 10
\issue 1
\pages 80--93
\crossref{https://doi.org/10.13108/2018-10-1-80}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000432413800007}
\scopus{http://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85044313763}


Linking options:
  • http://mi.mathnet.ru/eng/ufa420
  • http://mi.mathnet.ru/eng/ufa/v10/i1/p83

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles
  • Уфимский математический журнал
    Number of views:
    This page:57
    Full text:20
    References:10

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2019