RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PERSONAL OFFICE
 General information Latest issue Archive Impact factor Search papers Search references RSS Latest issue Current issues Archive issues What is RSS

 Ufimsk. Mat. Zh.: Year: Volume: Issue: Page: Find

 Ufimsk. Mat. Zh., 2018, Volume 10, Issue 1, Pages 83–95 (Mi ufa420)

Behavior of singular integral with Hilbert kernel at weak continuity point of density

R. B. Salimov

Kazan State University of Architecture and Engineering, Zelenaya str. 1, 420043, Kazan, Russia

Abstract: We consider the singular integral with the Hilbert kernel
$$I(\gamma_0)=\int\limits^{2\pi}_{0} \varphi(\gamma)\cot\frac{\gamma-\gamma_0}{2} d\gamma,$$
whose density $\varphi(\gamma)$ is a continuous in $[0, 2\pi]$ function, $\gamma_0 \in [0, 2\pi]$, $\varphi(0)=\varphi(2\pi)$, and the integral is treated in the sense of its principal value. We assume that in the vicinity of a fixed point $\gamma = c$, $c\in(c^{-},c^{+})\subset[0, 2\pi]$, $c^{+}-c^{-}<1$, the density $\varphi(\gamma)$ satisfies the representation $\varphi(\gamma)=\frac{\Phi(\gamma)}{(-\ln \sin^2 \frac{\gamma-c}{2})^{\beta}}, \gamma \in (c^{-},c^{+}),$ where $\Phi(\gamma)$ is a given continuous in $[c^{-},c]$, $[c,c^{+}]$ function with not necessarily coinciding one-sided limits $\Phi(c-0)$ and $\Phi(c+0)$, $\beta$ is a given number, and $\beta>1$. We suppose that the representations $\Phi(\gamma)-\Phi(c\pm0) = \frac{\chi(\gamma)}{( -\ln \sin^2 \frac{\gamma-c}{2})^{\delta}},$ $\chi'(\gamma)=\frac{\nu(\gamma)}{(-\ln \sin^2 \frac{\gamma-c}{2})\tan\frac{\gamma-c}{2}},$ hold, where $\delta>0$ is a given number, $\chi(\gamma)$, $\nu(\gamma)$ are given functions continuous in each of the intervals $[c^{-},c]$, $[c,c^{+}]$, $\nu(c\pm0)=0$, $\Phi(c+0)$ is taken as $\gamma > c$, $\Phi(c-0)$ is taken as $\gamma < c$.
We prove that under the above conditions the representation
\begin{align*} I(\gamma_0)&-I(c)= \frac{\Phi(c-0)-\Phi(c+0)}{(\beta-1)(-\ln\sin^2\frac{\gamma_0-c}{2})^{\beta-1}}
&- \frac{U(c+0)-U(c-0)}{\tilde{\beta}(\tilde{\beta}-1) (-\ln\sin^2\frac{\gamma_0-c}{2})^{\tilde{\beta}-1}}+ o(\frac{1}{(-\ln\sin^2\frac{\gamma_0-c}{2})^{\tilde{\beta}-1}}) +O(\frac{1}{(-\ln\sin^2\frac{\gamma_0-c}{2})^{\beta}}), \end{align*}
holds as $\gamma_0\to c$. Here $\tilde{\beta}=\beta+\delta$, $\beta>1$, $\delta>0$, $U(c+0)-U(c-0)=\tilde{\beta}(\chi(c+0)-\chi(c-0))$. We also consider the case $\beta=1$. A distinguishing feature of the paper is that while studying the behavior of the considered singular integral in the vicinity of the weak continuity point of its density, we need the Hölder condition no for the density neither for a component of the density. This feature allowed us to extend the range of possible applications of our results.

Keywords: singular integral, Hilbert kernel, Hölder condition, weak continuity.

 Funding Agency Grant Number Russian Foundation for Basic Research 12-01-00636_а The work is financially supported by RFBR (project no. 12-01-00636-a).

Full text: PDF file (409 kB)
References: PDF file   HTML file

English version:
Ufa Mathematical Journal, 2018, 10:1, 80–93 (PDF, 367 kB); https://doi.org/10.13108/2018-10-1-80

Bibliographic databases:

Document Type: Article
UDC: 517.54
MSC: 30G12

Citation: R. B. Salimov, “Behavior of singular integral with Hilbert kernel at weak continuity point of density”, Ufimsk. Mat. Zh., 10:1 (2018), 83–95; Ufa Math. J., 10:1 (2018), 80–93

Citation in format AMSBIB
\Bibitem{Sal18} \by R.~B.~Salimov \paper Behavior of singular integral with Hilbert kernel at weak continuity point of density \jour Ufimsk. Mat. Zh. \yr 2018 \vol 10 \issue 1 \pages 83--95 \mathnet{http://mi.mathnet.ru/ufa420} \elib{http://elibrary.ru/item.asp?id=32705555} \transl \jour Ufa Math. J. \yr 2018 \vol 10 \issue 1 \pages 80--93 \crossref{https://doi.org/10.13108/2018-10-1-80} \isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000432413800007} \scopus{http://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85044313763}