General information
Latest issue
Impact factor

Search papers
Search references

Latest issue
Current issues
Archive issues
What is RSS

Ufimsk. Mat. Zh.:

Personal entry:
Save password
Forgotten password?

Ufimsk. Mat. Zh., 2018, Volume 10, Issue 3, Pages 89–109 (Mi ufa441)  

This article is cited in 3 scientific papers (total in 3 papers)

Algebraic properties of quasilinear two-dimensional lattices connected with integrability

M. N. Poptsovaa, I. T. Habibullinba

a Institute of Mathematics, Ufa Federal Research Center, RAS, Chernyshevsky str. 112, 450008, Ufa, Russia
b Bashkir State University, Validy str. 32, 450077, Ufa, Russia

Abstract: In the paper we discuss a classification method for nonlinear integrable equations with three independent variables based on the notion of the integrable reductions. We call an equation integrable if it admits a large class of reductions being Darboux integrable systems of hyperbolic type equations with two independent variables. The most natural and convenient object to be studied in the framework of this scheme is the class of two dimensional lattices generalizing the well-known Toda lattice. In the present article we study the quasilinear lattices of the form
\begin{align*} u_{n,xy}=&\alpha(u_{n+1} ,u_n,u_{n-1} )u_{n,x}u_{n,y} + \beta(u_{n+1},u_n,u_{n-1})u_{n,x}
&+\gamma(u_{n+1} ,u_n,u_{n-1} )u_{n,y}+\delta(u_{n+1} ,u_n,u_{n-1}). \end{align*}
We specify the coefficients of the lattice assuming that there exist cutting off conditions which reduce the lattice to a Darboux integrable hyperbolic type system of the arbitrarily high order. Under some extra assumption of nondegeneracy we describe the class of the lattices integrable in the above sense. There are new examples in the obtained list of chains.

Keywords: two-dimensional integrable lattice, $x$-integral, integrable reduction, cut-off condition, open chain, Darboux integrable system, characteristic Lie algebra.

Funding Agency Grant Number
Russian Science Foundation 15-11-20007
The authors gratefully acknowledge financial support from a Russian Science Foundation grant (project 15-11-20007).

Full text: PDF file (562 kB)
References: PDF file   HTML file

English version:
Ufa Mathematical Journal, 2018, 10:3, 86–105 (PDF, 461 kB);

Bibliographic databases:

UDC: 517.9
MSC: 37K10, 37K30, 37D99
Received: 28.02.2018

Citation: M. N. Poptsova, I. T. Habibullin, “Algebraic properties of quasilinear two-dimensional lattices connected with integrability”, Ufimsk. Mat. Zh., 10:3 (2018), 89–109; Ufa Math. J., 10:3 (2018), 86–105

Citation in format AMSBIB
\by M.~N.~Poptsova, I.~T.~Habibullin
\paper Algebraic properties of quasilinear two-dimensional lattices connected with integrability
\jour Ufimsk. Mat. Zh.
\yr 2018
\vol 10
\issue 3
\pages 89--109
\jour Ufa Math. J.
\yr 2018
\vol 10
\issue 3
\pages 86--105

Linking options:

    SHARE: FaceBook Twitter Livejournal

    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. M. N. Poptsova, “Simmetrii odnoi periodicheskoi tsepochki”, Kompleksnyi analiz. Matematicheskaya fizika, Itogi nauki i tekhn. Ser. Sovrem. mat. i ee pril. Temat. obz., 162, VINITI RAN, M., 2019, 80–84  mathnet  mathscinet
    2. Ufa Math. J., 11:3 (2019), 109–131  mathnet  crossref  isi
    3. I. T. Habibullin, M. N. Kuznetsova, “A classification algorithm for integrable two-dimensional lattices via Lie–Rinehart algebras”, Theoret. and Math. Phys., 203:1 (2020), 569–581  mathnet  crossref  crossref  isi  elib
  • ”фимский математический журнал
    Number of views:
    This page:188
    Full text:84

    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2021