RUS  ENG ЖУРНАЛЫ   ПЕРСОНАЛИИ   ОРГАНИЗАЦИИ   КОНФЕРЕНЦИИ   СЕМИНАРЫ   ВИДЕОТЕКА   ПАКЕТ AMSBIB
Общая информация
Последний выпуск
Архив
Импакт-фактор

Поиск публикаций
Поиск ссылок

RSS
Последний выпуск
Текущие выпуски
Архивные выпуски
Что такое RSS



Уфимск. матем. журн.:
Год:
Том:
Выпуск:
Страница:
Найти






Персональный вход:
Логин:
Пароль:
Запомнить пароль
Войти
Забыли пароль?
Регистрация


Уфимск. матем. журн., 2018, том 10, выпуск 3, страницы 89–109 (Mi ufa441)  

Эта публикация цитируется в 1 научной статье (всего в 1 статье)

Алгебраические свойства квазилинейных двумеризованных цепочек, связанные с интегрируемостью

М. Н. Попцоваa, И. Т. Хабибуллинba

a Институт математики с вычислительным центром УФИЦ РАН, ул. Чернышевского, 112, 450008, г. Уфа, Россия
b Башкирский государственный университет, ул. Заки Валиди, 32, физико-математический корпус 450077, г. Уфа, Россия

Аннотация: Обсуждается метод классификации нелинейных интегрируемых уравнений с тремя независимыми переменными, основанный на понятии интегрируемой редукции. Авторы называют уравнение интегрируемым, если оно допускает широкий класс редукций, представляющих собой интегрируемые по Дарбу системы гиперболических уравнений с двумя независимыми переменными. Наиболее естественным и удобным объектом для применения такого подхода являются двумеризованные цепочки, обобщающие известную цепочку Тоды. В настоящей работе исследуются квазилинейные двумеризованные цепочки вида $u_{n,xy}=\alpha(u_{n+1} ,u_n,u_{n-1} )u_{n,x}u_{n,y} + \beta(u_{n+1},u_n,u_{n-1})u_{n,x}+\gamma(u_{n+1} ,u_n,u_{n-1} )u_{n,y}+\delta(u_{n+1} ,u_n,u_{n-1})$. Уточнен вид цепочки исходя из предположения, что существуют условия обрыва, сводящие цепочку к интегрируемой по Дарбу гиперболической системе, сколь угодно высокого порядка. При некотором дополнительном предположении о невырожденности мы провели описание цепочек, являющихся интегрируемыми в предложенном выше смысле. В полученном списке цепочек имеются новые примеры.

Ключевые слова: двумеризованная интегрируемая цепочка, $x$-интеграл, интегрируемая редукция, условие обрыва, открытая цепочка, система, интегрируемая по Дарбу, характеристическая алгебра Ли.

Финансовая поддержка Номер гранта
Российский научный фонд 15-11-20007
Исследование выполнено за счет гранта Российского научного фонда (проект №15-11-20007).


Полный текст: PDF файл (562 kB)
Список литературы: PDF файл   HTML файл

Англоязычная версия:
Ufa Mathematical Journal, 2018, 10:3, 86–105 (PDF, 461 kB); https://doi.org/10.13108/2018-10-3-86

Реферативные базы данных:

Тип публикации: Статья
УДК: 517.9
MSC: 37K10, 37K30, 37D99
Поступила в редакцию: 28.02.2018

Образец цитирования: М. Н. Попцова, И. Т. Хабибуллин, “Алгебраические свойства квазилинейных двумеризованных цепочек, связанные с интегрируемостью”, Уфимск. матем. журн., 10:3 (2018), 89–109; Ufa Math. J., 10:3 (2018), 86–105

Цитирование в формате AMSBIB
\RBibitem{KuzHab18}
\by М.~Н.~Попцова, И.~Т.~Хабибуллин
\paper Алгебраические свойства квазилинейных двумеризованных цепочек, связанные с интегрируемостью
\jour Уфимск. матем. журн.
\yr 2018
\vol 10
\issue 3
\pages 89--109
\mathnet{http://mi.mathnet.ru/ufa441}
\transl
\jour Ufa Math. J.
\yr 2018
\vol 10
\issue 3
\pages 86--105
\crossref{https://doi.org/10.13108/2018-10-3-86}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000457365400007}
\scopus{http://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85057011860}


Образцы ссылок на эту страницу:
  • http://mi.mathnet.ru/ufa441
  • http://mi.mathnet.ru/rus/ufa/v10/i3/p89

    ОТПРАВИТЬ: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    Эта публикация цитируется в следующих статьяx:
    1. М. Н. Попцова, “Симметрии одной периодической цепочки”, Комплексный анализ. Математическая физика, Итоги науки и техн. Сер. Соврем. мат. и ее прил. Темат. обз., 162, ВИНИТИ РАН, М., 2019, 80–84  mathnet
  • Уфимский математический журнал
    Просмотров:
    Эта страница:81
    Полный текст:26
    Литература:6

     
    Обратная связь:
     Пользовательское соглашение  Регистрация  Логотипы © Математический институт им. В. А. Стеклова РАН, 2019